###############################################################
 ###############################################################
 ###############################################################
 ### CCP4 6.3: POINTLESS             version 1.6.21 : 17/10/12##
 ###############################################################
 User: Administrator  Run date: 10/ 5/2013 Run time: 14:43:52 


 Please reference: Collaborative Computational Project, Number 4. 1994.
 "The CCP4 Suite: Programs for Protein Crystallography". Acta Cryst. D50, 760-763.
 as well as any specific reference in the program write-up.

>>>>> Input command lines <<<<<

end
>>>>>     End of input    <<<<<

Release Date: 17th October 2012


        ******************************************************
        *                                                    *
        *                     POINTLESS                      *
        *                       1.6.21                       *
        *                                                    *
        *   Determine Laue group from unmerged intensities   *
        *     Phil Evans MRC LMB, Cambridge                  *
        * Uses cctbx routines by Ralf Grosse-Kunstleve et al.*
        *                                                    *
        ******************************************************


 Spacegroup information obtained from library file: 
 Logical Name: SYMINFO   Filename: C:\CCP4\6.3\lib\data\syminfo.lib


Reflection list generated from file: b51001.mtz

Title: Untitled

   Space group from HKLIN file : P 4
   Cell:   78.74  78.74  36.84  90.00  90.00  90.00
   Resolution range in file:     21.38        1.38

Time for reading file(s):    1.953 secs

===============================================================

>*> Summary of test data read in:
   Resolution range accepted:    21.38        1.38

   Number of reflections      =         45964
   Number of observations     =        206855
   Number of parts            =        452351
   Number of batches in file  =           240
   Number of datasets         =             1
      Project: New Crystal: New Dataset: New
         Run number:   1 consists of batches  51001 to  51240
            Phi range:   120.00 to   240.00   Time range:   120.00 to   240.00
            Closest reciprocal axis to spindle: b* (angle     21 degrees)
   Average unit cell:   78.74   78.74   36.84   90.00   90.00   90.00 
   

Numbers of observations marked in the FLAG column
By default all flagged observations are rejected
Observations may be counted in more than one category

                             Flagged  Accepted   Maximum   MaxAccepted
   BGratio too large              0       0       1.900       0.000
   PKratio too large             12       0       4.760       0.000
   Negative < 5sigma            105       0
   Gradient too large            84       0       0.087       0.000
   Profile-fitted overloads       3       3
   Spots on edge                  0       0


===============================================================

Checking for possible twinning
L-test for twinning (acentrics only) to maximum resolution    1.380
    using Mn(I/sigmaI) cutoff    8.0

$TABLE: L-test for twinning, twin fraction 0.000:
$GRAPHS:Cumulative distribution function for |L|:N:1,2,3,4:
$$
      |L|       N(|L|)  Untwinned    Twinned  $$ $$
     0.0000     0.0000     0.0000     0.0000
     0.0500     0.0517     0.0500     0.0749
     0.1000     0.1008     0.1000     0.1495
     0.1500     0.1489     0.1500     0.2233
     0.2000     0.1972     0.2000     0.2960
     0.2500     0.2459     0.2500     0.3672
     0.3000     0.2945     0.3000     0.4365
     0.3500     0.3428     0.3500     0.5036
     0.4000     0.3912     0.4000     0.5680
     0.4500     0.4408     0.4500     0.6294
     0.5000     0.4901     0.5000     0.6875
     0.5500     0.5400     0.5500     0.7418
     0.6000     0.5905     0.6000     0.7920
     0.6500     0.6415     0.6500     0.8377
     0.7000     0.6933     0.7000     0.8785
     0.7500     0.7459     0.7500     0.9141
     0.8000     0.7983     0.8000     0.9440
     0.8500     0.8513     0.8500     0.9679
     0.9000     0.9049     0.9000     0.9855
     0.9500     0.9576     0.9500     0.9963
     1.0000     1.0000     1.0000     1.0000
$$
      Estimated twin fraction alpha from cumulative N(|L|) plot 0.000 (0.000)
   <|L|>:    0.504 (0.5 untwinned, 0.375 perfect twin)
      Estimated twin fraction alpha from <|L|>    0.000
   :    0.336 (0.333 untwinned, 0.2 perfect twin)
      Estimated twin fraction alpha from     0.000

The L-test suggests that the data are not twinned
Note that the estimate of the twin fraction from the L-test is not very accurate,
  particularly for high twin fractions. Better estimates from other test need knowledge of
  the point group and the twin operator, which are not available here
Also these statistics come from unscaled (and unmerged), so may be inaccurate for that reason

Time for twinning test   12.797 secs

======================================================================

Model for expectation(CC) = E(m) if symmetry is absent P(m;!S) = (1-m^k)^(1/k) with k =  2.0


Unit cell (from HKLIN file) used to derive lattice symmetry with tolerance   2.0 degrees
  78.74  78.74  36.84  90.00  90.00  90.00

Tolerance (and delta) is the maximum deviation from the
 expected angle between two-fold axes in the lattice group

Lattice point group: P 4 2 2
Reindexing or changing symmetry
Reindex operator from input cell to lattice cell: [h,k,l]

   h'   = ( h k l ) (       1       0       0 )
                    (       0       1       0 )
                    (       0       0       1 )


Lattice unit cell after reindexing: deviation 0.00 degrees
  78.74  78.74  36.84  90.00  90.00  90.00


Number of reflections  =             24131
Number of observations =            206855
Number of scaled observations =        794
Average multiplicity =                 8.6

Resolution range in list:      21.38 ->   1.38
   
Intensity normalisation: B-factor =   -9.7  +  -0.0007 * time  (final B  -9.8)

Resolution range reset to    21.38 to     1.38
   using Mn(I/sigmaI) cutoff    6.0
   

Overall CC for 20000 unrelated pairs:   0.021  N= 20000

    Estimated expectation value of true correlation coefficient E(CC) =  0.992

    Estimated sd(CC) = 1.036 / Sqrt(N)

  Number of reflections omitted from ice rings:      863
   
Estimated E(CC) of true correlation coefficient from identity =  0.979


*******************************************

Analysing rotational symmetry in lattice group P 4/m m m
----------------------------------------------



Scores for each symmetry element

Nelmt  Lklhd  Z-cc    CC        N  Rmeas    Symmetry & operator (in Lattice Cell)

  1   0.954   9.73   0.97   56366  0.047     identity
  2   0.952   9.69   0.97  117417  0.047 *** 2-fold l ( 0 0 1) {-h,-k,l}
  3   0.953   9.71   0.97  120159  0.047 *** 2-fold k ( 0 1 0) {-h,k,-l}
  4   0.956   9.79   0.98  136464  0.043 *** 2-fold h ( 1 0 0) {h,-k,-l}
  5   0.953   9.72   0.97  129489  0.046 *** 2-fold   ( 1-1 0) {-k,-h,-l}
  6   0.952   9.69   0.97  123022  0.047 *** 2-fold   ( 1 1 0) {k,h,-l}
  7   0.951   9.66   0.97  251546  0.049 *** 4-fold l ( 0 0 1) {-k,h,l}{k,-h,l}



Time to determine pointgroup:   18.640 secs

Acceptable Laue groups have scores above  0.20


Scores for all possible Laue groups which are sub-groups of lattice group
-------------------------------------------------------------------------

Note that correlation coefficients are from intensities approximately normalised
by resolution, so will be worse than the usual values
Rmeas is the multiplicity weighted R-factor

Lklhd is a likelihood measure, a probability used in the ranking of space groups

Z-scores are from combined scores for all symmetry elements
in the sub-group (Z+) or not in sub-group (Z-)

    NetZ = Z+ - Z-

Net Z-scores are calculated for correlation coefficients (cc)
The point-group Z-scores Zc are calculated  
    as the Zcc-scores recalculated for all symmetry elements for or against,

CC- and R- are the correlation coefficients and R-factors for symmetry elements not in the group

Delta is maximum angular difference (degrees) between original cell
and cell with symmetry constraints imposed

The reindex operator converts original index scheme into the conventional
scheme for sub-group

Accepted Laue groups are marked '>'
The HKLIN Laue group is marked '=' if accepted, '-' if rejected




   Laue Group        Lklhd   NetZc  Zc+   Zc-    CC    CC-  Rmeas   R-  Delta ReindexOperator

> 1  P 4/m m m  ***  1.000   9.71  9.71  0.00   0.97  0.00   0.05  0.00   0.0 [h,k,l]
  2    P m m m       0.000   0.04  9.73  9.69   0.97  0.97   0.05  0.05   0.0 [l,h,k]
  3    C m m m       0.000  -0.02  9.70  9.72   0.97  0.97   0.05  0.05   0.0 [h+k,-h+k,l]
- 4      P 4/m       0.000  -0.03  9.69  9.72   0.97  0.97   0.05  0.05   0.0 [h,k,l]
  5  P 1 2/m 1       0.000   0.08  9.77  9.69   0.98  0.97   0.04  0.05   0.0 [l,h,k]
  6  C 1 2/m 1       0.000   0.01  9.72  9.71   0.97  0.97   0.05  0.05   0.0 [h+k,-h+k,l]
  7  P 1 2/m 1       0.000   0.01  9.72  9.71   0.97  0.97   0.05  0.05   0.0 [-l,-k,-h]
  8  C 1 2/m 1       0.000  -0.00  9.71  9.71   0.97  0.97   0.05  0.05   0.0 [h-k,h+k,l]
  9  P 1 2/m 1       0.000  -0.00  9.71  9.71   0.97  0.97   0.05  0.05   0.0 [k,l,h]
 10       P -1       0.000   0.02  9.73  9.71   0.97  0.97   0.05  0.05   0.0 [l,h,k]




********************************************************

Testing Lauegroups for systematic absences
------------------------------------------

I' is intensity adjusted by subtraction of a small fraction (0.02, NEIGHBOUR)
 of the neighbouring intensities, to allow for possible overlap

$TABLE: Axial reflections, axis c (lattice frame) screw axis 4(1):
$GRAPHS: I/sigI vs. index :N: 1,4,5 :: I vs. index :N: 1,2 :$$

    Index         I       sigI     I/sigI   I'/sigI  $$ $$

       2         -9         14     -0.60      1.13
       3         31         18      1.75      0.00
       4     175545        120   1458.93   1458.93
       5          6         35      0.17      0.00
       6        -16         40     -0.40      0.02
       7         83         46      1.80      0.00
       8     450993        275   1639.09   1639.06
       9        255         50      5.11      0.00
      11        104         73      1.41      0.00
      12     541469        381   1421.34   1421.34
      13        -25         72     -0.35      0.00
      14         57         69      0.82      1.51
      15         85         67      1.26      0.00
      16     482206        432   1116.13   1116.13
      17        -67         75     -0.89      0.00
      18        287         91      3.15      3.15
      19        -79         71     -1.11      0.00
      20      98033        236    414.76    414.76
      21       -166         71     -2.35      0.00
      22        199         62      3.19      3.19
      23        -33         57     -0.58      0.00
      24       2049         96     21.41     21.37
      25        178         81      2.20      1.77
      26         98         71      1.38      1.45
$$

$TABLE: Axial reflections, axis a (lattice frame) screw axis 2(1):
$GRAPHS: I/sigI vs. index :N: 1,4,5 :: I vs. index :N: 1,2 :$$

    Index         I       sigI     I/sigI   I'/sigI  $$ $$

       4     620881        133   4664.84   4664.81
       5        221          9     24.66      0.00
       6      25112         25    998.93    998.68
       7         94         12      7.99      0.00
       8     493465        118   4168.81   4168.79
       9         46         14      3.21      0.00
      10     447274        126   3557.85   3557.84
      11         48         18      2.76      0.00
      12     313154        115   2719.11   2719.08
      13        101         19      5.41      0.00
      14       6126         26    237.64    237.27
      15        374         22     16.93      0.00
      16     669968        191   3511.07   3510.96
      17        685         24     28.71      0.00
      18     987609        243   4062.93   4062.83
      19        489         26     18.46      0.00
      20     460708        174   2642.40   2642.32
      21        190         28      6.88      0.00
      22      14046         42    334.89    334.59
      23        447         30     15.12      0.00
      24     127258        141    902.62    902.46
      25        732         46     15.97      0.00
      26     369825        238   1555.91   1555.82
      27        283         36      7.85      0.00
      28       1116         40     27.68     27.35
      29        390         36     10.74      0.00
      30     125980        144    874.79    874.71
      31        232         46      5.05      0.00
      32      53546         95    564.35    564.22
      33        372         49      7.59      0.00
      34     202241        159   1268.91   1268.82
      35        319         41      7.73      0.00
      36       1870        171     10.91     10.87
      37       -322        167     -1.93      0.00
      39        370        115      3.23      0.00
      40      94246        343    274.47    274.45
      41       -305        148     -2.06      0.00
      42      11527        178     64.68     64.63
      43        440        106      4.17      0.00
      44      50258        280    179.34    179.31
      45       -152        135     -1.12      0.00
      46       3356        146     22.93     22.92
      47         46         91      0.51      0.00
      48      18535        203     91.12     91.11
      49        -51        157     -0.32      0.00
      50       8958        191     46.92     46.92
      51       -261        105     -2.48      0.00
      52       2865        157     18.27     18.25
      53         93        135      0.69      0.00
      54      23465        220    106.46    106.45
$$

Each 'zone' (axis or plane) in which some reflections may be systematically absent
are scored by Fourier analysis of I'/sigma(I). 'PeakHeight' is the value
in Fourier space at the relevent point (eg at 1/2 for a 2(1) axis)
relative to the origin. This has an ideal value of 1.0 if the corresponding
symmetry element is present. Zone directions (a,b,c) shown here are in the
lattice group frame

'Probability' is an estimate of how likely the element is to be  present



         Zone                Number PeakHeight  SD  Probability  ReflectionCondition

Zones for Laue group P 4/m m m
 1 screw axis 4(2) [c]           48   0.999   0.154       0.010   00l: l=2n
 1 screw axis 4(1) [c]           48   0.996   0.116   *** 0.981   00l: l=4n
 2 screw axis 2(1) [a]           70   1.000   0.127   *** 0.981   h00: h=2n



Time for systematic absence tests:    0.860 secs


Possible spacegroups:
--------------------
Indistinguishable space groups are grouped together on successive lines

'Reindex' is the operator to convert from the input hklin frame to the standard spacegroup frame.

'TotProb' is a total probability estimate (unnormalised)

'SysAbsProb' is an estimate of the probability of the space group based on
the observed systematic absences.

'Conditions' are the reflection conditions (absences)


   Spacegroup         TotProb SysAbsProb     Reindex         Conditions

   

( 92) 0.962 0.962 00l: l=4n, h00: h=2n (zones 1,2)

( 96) 0.962 0.962 00l: l=4n, h00: h=2n (zones 1,2) ..........

( 91) 0.018 0.018 00l: l=4n (zone 1)

( 95) 0.018 0.018 00l: l=4n (zone 1) ..........

( 94) 0.010 0.010 00l: l=2n, h00: h=2n (zones 1,2) --------------------------------------------------------------- Choosing between possible best groups: Space group Point group Reindex P 41 21 2 P 4 2 2 [h,k,l] P 43 21 2 P 4 2 2 [h,k,l] Selecting space group P 41 21 2 as solutions are enantiomorphic Space group confidence (= Sqrt(Score * (Score - NextBestScore))) = 0.95 Laue group confidence (= Sqrt(Score * (Score - NextBestScore))) = 1.00 $TEXT:Result: $$ $$ Best Solution: space group P 41 21 2 Reindex operator: [h,k,l] Laue group probability: 1.000 Systematic absence probability: 0.962 Total probability: 0.962 Space group confidence: 0.953 Laue group confidence 1.000 Unit cell: 78.74 78.74 36.84 90 90 90 21.38 to 1.38 - Resolution range used for Laue group search 21.38 to 1.38 - Resolution range in file, used for systematic absence check Number of batches in file: 240 The data do not appear to be twinned, from the L-test $$ HKLIN spacegroup: P 4 primitive tetragonal b51001.mtz Filename: b51001.mtz ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Writing unmerged data to file pointless_b51001.mtz in space group P 41 21 2 Reindexing operator [h,k,l] Real space transformation (x,y,z) * Title: Untitled * Base dataset: 0 HKL_base HKL_base HKL_base * Number of Datasets = 1 * Dataset ID, project/crystal/dataset names, cell dimensions, wavelength: 1 New New New 78.7400 78.7400 36.8399 90.0000 90.0000 90.0000 1.54187 * Number of Columns = 18 * Number of Reflections = 452351 * Missing value set to NaN in input mtz file * Number of Batches = 240 * Column Labels : H K L M/ISYM BATCH I SIGI IPR SIGIPR FRACTIONCALC XDET YDET ROT WIDTH LP MPART FLAG BGPKRATIOS * Column Types : H H H Y B J Q J Q R R R R R R I I R * Associated datasets : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * Cell Dimensions : (obsolete - refer to dataset cell dimensions above) 78.7400 78.7400 36.8399 90.0000 90.0000 90.0000 * Resolution Range : 0.00219 0.52503 ( 21.376 - 1.380 A ) * Sort Order : 1 2 3 4 5 * Space group = 'P 41 21 2' (number 92) (one of pair of enantiomorphic spacegroups) $TEXT:Reference: $$ Please reference $$ P.R.Evans, 'Scaling and assessment of data quality' Acta Cryst. D62, 72-82 (2006). P.R.Evans, 'An introduction to data reduction: space-group determination, scaling and intensity statistics' Acta Cryst. D67, 282-292 (2011) $$ ############################################################### ############################################################### ############################################################### ### CCP4 6.3: AIMLESS version 0.1.26 : 03/07/12## ############################################################### User: Administrator Run date: 10/ 5/2013 Run time: 14:44:16 Please reference: Collaborative Computational Project, Number 4. 1994. "The CCP4 Suite: Programs for Protein Crystallography". Acta Cryst. D50, 760-763. as well as any specific reference in the program write-up. Release Date: 3rd July 2012 ****************************************************** * * * AIMLESS * * 0.1.26 * * * * Scaling & analysis of unmerged intensities * * Phil Evans MRC LMB, Cambridge * * * ****************************************************** >>>>> Input command lines <<<<< scales rotation spacing 5 secondary 4 bfactor on brotation spacing 20 anomalous on end >>>>> End of input <<<<< --------------------------------------------------------------- Reading data from HKLIN filename: pointless_b51001.mtz Spacegroup information obtained from library file: Logical Name: SYMINFO Filename: C:\CCP4\6.3\lib\data\syminfo.lib Reflection list generated from file: pointless_b51001.mtz Title: Untitled Space group from HKLIN file : P 41 21 2 Cell: 78.74 78.74 36.84 90.00 90.00 90.00 Resolution range in file: 21.38 1.38 Time for reading HKLIN: cpu time: 0.48 secs, elapsed time: 1.0 secs Resolution range accepted: 21.38 1.38 Number of reflections = 24131 Number of observations = 206061 Number of parts = 452351 Number of batches = 240 Number of datasets = 1 Project: New Crystal: New Dataset: New Cell: 78.74 78.74 36.84 90.00 90.00 90.00 Wavelength 1.54187 A Run number: 1 consists of batches 51001 to 51240 Phi range: 120.00 to 240.00 Time range: 120.00 to 240.00 Closest reciprocal axis to spindle: b* (angle 21 degrees) Average unit cell: 78.74 78.74 36.84 90.00 90.00 90.00 Selection of intensity type (Isum or Ipr) will be optimised Profile fitted value Ipr will be used for 1st scaling Handling of partials: MPART flags are checked Summed partials accepted if total fraction is between 0.95 & 1.05 2311 partial sets rejected with total fraction too small 0 partial sets rejected with total fraction too large 22 partial sets rejected with gaps Outlier rejection parameters: In scaling: Reflections measured 3 or more times: 6 maximum deviation from weighted mean of all other observations Reflections measured twice: 6 maximum deviation from weighted mean Policy for deviant reflections measured twice: KEEP Reflections judged implausibly large will be rejected Maximum and minimum normalised F (ie E) for acentric reflection 10.00, -5.00 Maximum and minimum normalised F (ie E) for centric reflection 13.94, -6.97 Minimum probability before reflection is rejected 3.78e-044 In merging: Reflections measured 3 or more times: 6 maximum deviation from weighted mean of all other observations Reflections measured twice: 6 maximum deviation from weighted mean Policy for deviant reflections measured twice: KEEP Reflections judged implausibly large will be rejected Maximum and minimum normalised F (ie E) for acentric reflection 10.00, -5.00 Maximum and minimum normalised F (ie E) for centric reflection 13.94, -6.97 Minimum probability before reflection is rejected 3.78e-044 >>>> Layout of scale factors: <<<< Run 1 Smooth scaling: 26 scales at intervals of 5 over range 120 to 240 in 24 parts Smooth B-factors: 8 scales at intervals of 20 over range 120 to 240 in 6 parts Secondary beam correction in camera frame, lmax = 4, 3 Secondary beam parameters will be TIED to zero, ie restrained to a sphere, with a standard deviation of 0.001, number of ties 24 ========= Initial scaling ========= Optimization statistics macrocycle #1 Cycle end-this-cycle change-from-start change-from-last start -32019372797.849 #1 -24073627378.312 7945745419.538 7945745419.538 #2 -24072922765.548 7946450032.301 704612.763 #3 -24072922758.219 7946450039.630 7.329 Initial scales for run 1 0.999 0.979 0.960 0.949 1.036 0.975 0.945 1.048 0.946 1.050 0.991 0.975 1.179 1.080 1.091 1.100 1.004 0.979 0.952 0.994 0.918 0.979 0.960 0.992 Time for initial scaling: cpu time: 0.05 secs, elapsed time: 0.0 secs ========= First round scaling ========= First scaling: 739 reflections selected from 24131 with I/sd > 25.00, using every 28'th reflection above that limit Optimization statistics macrocycle #1 Cycle end-this-cycle change-from-start change-from-last start -1150002.989 #1 -589153.086 560849.903 560849.903 #2 -577977.979 572025.010 11175.107 ---ITERATION LIMIT OF MACROCYCLE--- Number of outliers within I+ || I- sets: 528, between I+ & I- 0, on |E|max 0 Time for 1st scaling: cpu time: 1.81 secs, elapsed time: 2.0 secs ========= Optimising selection of intensity estimate ========= The input HKLIN file contains two estimates of intensity, a summation integration value Isum and a profile-fitted value Ipr The optimisation here chooses the value which gives the smallest overall Rmeas: either Ipr, Isum or a combination of the two based on the Iraw value, where Iraw is the Isum value back-corrected for Lorentz and Polarisation Mean Iraw for all data: 113107.9 Rmeas also printed for inner and outer resolution ranges Intensity type Rmeas Inner Outer Resolution range (A) All 21.4-7.14 1.40-1.38 Summation intensities 0.0349 0.0196 0.0935 Profile intensities 0.0368 0.0199 0.1062 Combined intensities Imid = 90486 0.0355 0.0195 0.1062 Combined intensities Imid = 45243 0.0352 0.0196 0.1062 Combined intensities Imid = 22622 0.0349 0.0196 0.1061 Combined intensities Imid = 11311 0.0348 0.0196 0.1056 Combined intensities Imid = 5655 0.0348 0.0196 0.1031 Best value: Combined intensities Imid = 5655 0.0348 0.0196 0.1031 Combined intensities will be used: weighted mean of profile-fitted (Ipr) & summation (Isum) intensities I = w * Ipr + (1-w) * Isum w = 1/(1+(Iraw/5655.4)^3) Time for optimisation of intensity type selection: cpu time: 0.03 secs, elapsed time: 0.0 secs First rough optimisation and analysis of standard deviations ============================================================ Weighting scheme for averages: variance weights Run 1 has fulls & partials For run 1, slopes (full, partial) of central part of normal probability plot = 2.08, 2.14 Correction applied to parameters for fulls and partials SD correction parameters after normal probability correction Fulls Partials Run SdFac SdB SdAdd SdFac SdB SdAdd 1 Fulls & partials 2.08 0.00 0.0200 2.14 0.00 0.0200 I+ and I- will be kept separate in SD optimisation For SD optimisation, number of outliers within I+ || I- sets: 2, between I+ & I- 0, on |E|max 0 12772 reflections selected for SD optimisation out of 24131 in file Damping factor: 0.050 Restraints on SD correction parameters (target (+-SD)): SdAdd 0.020 (+-0.100) Cycle 1 residual 0.31130 Cycle 2 residual 0.10154 (main residual 0.10131 restraint residual 0.00023) Cycle 3 residual 0.04395 (main residual 0.04318 restraint residual 0.00077) Cycle 4 residual 0.02382 (main residual 0.02266 restraint residual 0.00116) Cycle 5 residual 0.01731 (main residual 0.01599 restraint residual 0.00131) Cycle 6 residual 0.01629 (main residual 0.01492 restraint residual 0.00136) SD correction parameters after optimisation Fulls Partials Run SdFac SdB SdAdd SdFac SdB SdAdd 1 Fulls & partials 6.65 0.00 0.0048 7.42 0.00 0.0059 Time for SD optimisation = cpu time: 2.06 secs, elapsed time: 2.0 secs Number of outliers within I+ || I- sets: 261, between I+ & I- 0, on |E|max 0 ========= Main scaling ========= Main scaling: 9687 reflections selected from 24131 with |E^2| > 0.80 and |E^2| < 5.00 Optimization statistics macrocycle #1 Cycle end-this-cycle change-from-start change-from-last start -9963225.359 #1 -8081142.352 1882083.007 1882083.007 #2 -8081142.352 1882083.007 -0.000 Scale parameters: Run 1 Primary scales and number of observations Scales: 0.980 1.000 0.996 0.987 1.045 1.029 1.010 1.011 1.027 1.002 Nobs: 3429 6945 10394 10441 10490 10538 10670 10624 10687 10655 Scales: 1.020 1.050 1.000 1.024 1.015 1.014 1.014 0.995 1.012 0.979 Nobs: 10740 10881 10799 10782 10655 10633 10726 10763 10862 10708 Scales: 0.978 0.984 0.978 0.995 0.995 1.000 Nobs: 10600 10595 10625 10441 6875 3319 Relative B-factors and number of observations B-factors: -0.023 0.000 -0.895 -0.618 -0.805 -0.575 -0.462 0.342 Nobs: 13870 28059 42500 42757 42956 42459 28332 13944 Secondary scales 0.023 -0.090 0.017 0.027 -0.091 0.022 -0.001 -0.115 0.004 -0.051 0.015 -0.004 0.000 -0.009 -0.025 0.001 -0.011 0.002 -0.001 0.005 -0.003 -0.005 0.000 -0.042 Time for main scaling: cpu time: 10.47 secs, elapsed time: 11.0 secs Optimisation and analysis of standard deviations ================================================ Weighting scheme for averages: variance weights Run 1 has fulls & partials Current SD correction parameters Fulls Partials Run SdFac SdB SdAdd SdFac SdB SdAdd 1 Fulls & partials 6.65 0.00 0.0048 7.42 0.00 0.0059 I+ and I- will be kept separate in SD optimisation For SD optimisation, number of outliers within I+ || I- sets: 0, between I+ & I- 0, on |E|max 0 13812 reflections selected for SD optimisation out of 24131 in file Damping factor: 0.050 Restraints on SD correction parameters (target (+-SD)): SdB 0.0 (+-25.0) Cycle 1 residual 0.02994 Cycle 2 residual 0.01662 (main residual 0.01661 restraint residual 0.00002) Cycle 3 residual 0.05636 (main residual 0.00877 restraint residual 0.04760) Cycle 4 residual 0.01279 (main residual 0.00907 restraint residual 0.00372) Cycle 5 residual 0.01111 (main residual 0.00905 restraint residual 0.00205) Cycle 6 residual 0.01084 (main residual 0.00902 restraint residual 0.00182) Cycle 7 residual 0.01081 (main residual 0.00900 restraint residual 0.00182) Cycle 8 residual 0.01082 (main residual 0.00896 restraint residual 0.00186) Cycle 9 residual 0.01093 (main residual 0.00902 restraint residual 0.00191) Cycle 10 residual 0.01098 (main residual 0.00903 restraint residual 0.00195) Cycle 11 residual 0.01100 (main residual 0.00899 restraint residual 0.00201) Residual increasing, revert to best cycle and exit SD correction parameters after optimisation Fulls Partials Run SdFac SdB SdAdd SdFac SdB SdAdd 1 Fulls & partials 1.35 36.47 0.0153 3.28 11.14 0.0062 Time for SD optimisation = cpu time: 4.55 secs, elapsed time: 4.0 secs Normal probability analysis of anomalous differences ==================================================== All data Data within expected delta 0.90 Slope Intercept Number Slope Intercept Number 1.29 -0.03 20460 1.03 0.01 12928 Outlier rejection limits for I+ v I- have been adjusted by a factor 3.70 * 1.03 Reflections measured 3 or more times: 34.2 maximum deviation from weighted mean of all other observations Reflections measured twice: 34.2 maximum deviation from weighted mean Policy for deviant reflections measured twice: KEEP Anomalous flag switched ON in input, strong anomalous signal found Outlier analysis ================ Number of rejected outliers within I+ || I- sets: 139, between I+ & I- 0, on |E|max 0 ******************** * Final statistics * ******************** Numbers of observations marked in the FLAG column By default all flagged observations are rejected Observations may be counted in more than one category Flagged Accepted Maximum MaxAccepted BGratio too large 0 0 1.900 0.000 PKratio too large 12 0 4.760 0.000 Negative < 5sigma 104 0 Gradient too large 84 0 0.087 0.000 Profile-fitted overloads 3 0 Spots on edge 0 0 ********************************************** * Merging statistics for dataset New/New/New * ********************************************** Accepted data: Number of unique reflections 24129 Number of observations 205741 Number of fully-recorded observations 17683 Number of partially-recorded observations 188058 Number of scaled partial observations 0 Number of rejected outliers 139 Number of observations rejected on Emax limit 0 Scale factors analysed by Batch for each dataset ================================================ Note that 0k below is calculated for the centre of each rotation range, at theta = 0 (for the B-factor) Mn(k) is average applied scale, including any input scale 0k is the scale calculated excluding any input scale $TABLE: >>> Scales v rotation range, New: $GRAPHS:Mn(k) & 0k (theta=0) v. batch:N:1,6,7: :Relative Bfactor v. batch:A:1,5: $$ N Run Phi Batch Bfactor Mn(k) 0k Number $$ $$ 1 1 120.25 51001 -0.02 0.8958 0.9911 546 2 1 120.75 51002 -0.02 0.9077 0.9931 841 3 1 121.25 51003 -0.02 0.9079 0.9948 874 4 1 121.75 51004 -0.02 0.9128 0.9961 843 5 1 122.25 51005 -0.02 0.9157 0.9971 877 6 1 122.75 51006 -0.02 0.9134 0.9978 879 7 1 123.25 51007 -0.03 0.9170 0.9981 872 8 1 123.75 51008 -0.03 0.9195 0.9982 862 9 1 124.25 51009 -0.03 0.9189 0.9981 836 10 1 124.75 51010 -0.03 0.9180 0.9978 857 11 1 125.25 51011 -0.04 0.9203 0.9975 822 12 1 125.75 51012 -0.04 0.9165 0.9970 822 13 1 126.25 51013 -0.05 0.9235 0.9965 921 14 1 126.75 51014 -0.05 0.9230 0.9959 872 15 1 127.25 51015 -0.05 0.9252 0.9954 871 16 1 127.75 51016 -0.06 0.9231 0.9949 891 17 1 128.25 51017 -0.07 0.9230 0.9942 879 18 1 128.75 51018 -0.07 0.9261 0.9935 825 19 1 129.25 51019 -0.08 0.9256 0.9926 888 20 1 129.75 51020 -0.09 0.9259 0.9917 829 21 1 130.25 51021 -0.10 0.9298 0.9912 812 22 1 130.75 51022 -0.11 0.9314 0.9908 880 23 1 131.25 51023 -0.12 0.9311 0.9907 847 24 1 131.75 51024 -0.13 0.9356 0.9912 908 25 1 132.25 51025 -0.14 0.9386 0.9924 863 26 1 132.75 51026 -0.16 0.9416 0.9944 856 27 1 133.25 51027 -0.17 0.9471 0.9973 887 28 1 133.75 51028 -0.19 0.9538 1.0012 857 29 1 134.25 51029 -0.20 0.9653 1.0062 819 30 1 134.75 51030 -0.22 0.9706 1.0118 885 31 1 135.25 51031 -0.24 0.9770 1.0181 793 32 1 135.75 51032 -0.26 0.9892 1.0238 887 33 1 136.25 51033 -0.28 0.9978 1.0289 878 34 1 136.75 51034 -0.30 1.0065 1.0330 897 35 1 137.25 51035 -0.32 1.0108 1.0360 878 36 1 137.75 51036 -0.34 1.0156 1.0379 844 37 1 138.25 51037 -0.36 1.0195 1.0388 841 38 1 138.75 51038 -0.39 1.0259 1.0389 851 39 1 139.25 51039 -0.41 1.0292 1.0384 844 40 1 139.75 51040 -0.43 1.0325 1.0373 844 41 1 140.25 51041 -0.46 1.0359 1.0360 883 42 1 140.75 51042 -0.48 1.0362 1.0343 870 43 1 141.25 51043 -0.51 1.0412 1.0326 875 44 1 141.75 51044 -0.53 1.0454 1.0311 912 45 1 142.25 51045 -0.55 1.0445 1.0296 833 46 1 142.75 51046 -0.57 1.0453 1.0281 803 47 1 143.25 51047 -0.59 1.0511 1.0266 873 48 1 143.75 51048 -0.61 1.0531 1.0248 874 49 1 144.25 51049 -0.63 1.0521 1.0229 897 50 1 144.75 51050 -0.65 1.0526 1.0209 881 51 1 145.25 51051 -0.66 1.0508 1.0186 843 52 1 145.75 51052 -0.68 1.0611 1.0167 850 53 1 146.25 51053 -0.70 1.0562 1.0150 823 54 1 146.75 51054 -0.71 1.0522 1.0136 848 55 1 147.25 51055 -0.72 1.0619 1.0126 860 56 1 147.75 51056 -0.73 1.0600 1.0118 926 57 1 148.25 51057 -0.74 1.0607 1.0113 882 58 1 148.75 51058 -0.75 1.0633 1.0109 821 59 1 149.25 51059 -0.76 1.0662 1.0107 856 60 1 149.75 51060 -0.77 1.0666 1.0106 846 61 1 150.25 51061 -0.78 1.0667 1.0106 810 62 1 150.75 51062 -0.78 1.0664 1.0108 875 63 1 151.25 51063 -0.79 1.0691 1.0110 917 64 1 151.75 51064 -0.79 1.0744 1.0114 900 65 1 152.25 51065 -0.79 1.0733 1.0119 821 66 1 152.75 51066 -0.80 1.0701 1.0126 842 67 1 153.25 51067 -0.80 1.0755 1.0136 810 68 1 153.75 51068 -0.80 1.0772 1.0148 921 69 1 154.25 51069 -0.80 1.0854 1.0163 868 70 1 154.75 51070 -0.80 1.0803 1.0180 878 71 1 155.25 51071 -0.79 1.0819 1.0196 881 72 1 155.75 51072 -0.79 1.0798 1.0211 830 73 1 156.25 51073 -0.79 1.0804 1.0222 843 74 1 156.75 51074 -0.78 1.0914 1.0229 856 75 1 157.25 51075 -0.78 1.0870 1.0231 907 76 1 157.75 51076 -0.78 1.0812 1.0228 875 77 1 158.25 51077 -0.77 1.0827 1.0218 821 78 1 158.75 51078 -0.76 1.0806 1.0203 851 79 1 159.25 51079 -0.76 1.0739 1.0182 841 80 1 159.75 51080 -0.75 1.0739 1.0158 915 81 1 160.25 51081 -0.75 1.0712 1.0134 846 82 1 160.75 51082 -0.75 1.0677 1.0110 836 83 1 161.25 51083 -0.74 1.0645 1.0090 880 84 1 161.75 51084 -0.73 1.0562 1.0075 862 85 1 162.25 51085 -0.73 1.0594 1.0066 837 86 1 162.75 51086 -0.72 1.0652 1.0063 895 87 1 163.25 51087 -0.71 1.0546 1.0066 826 88 1 163.75 51088 -0.71 1.0581 1.0073 905 89 1 164.25 51089 -0.70 1.0564 1.0085 850 90 1 164.75 51090 -0.70 1.0572 1.0101 833 91 1 165.25 51091 -0.69 1.0582 1.0121 855 92 1 165.75 51092 -0.69 1.0673 1.0141 859 93 1 166.25 51093 -0.68 1.0641 1.0161 872 94 1 166.75 51094 -0.68 1.0586 1.0180 849 95 1 167.25 51095 -0.68 1.0661 1.0199 888 96 1 167.75 51096 -0.67 1.0678 1.0219 829 97 1 168.25 51097 -0.67 1.0695 1.0241 865 98 1 168.75 51098 -0.67 1.0752 1.0266 876 99 1 169.25 51099 -0.67 1.0754 1.0295 876 100 1 169.75 51100 -0.67 1.0774 1.0326 867 101 1 170.25 51101 -0.67 1.0823 1.0357 880 102 1 170.75 51102 -0.67 1.0804 1.0382 845 103 1 171.25 51103 -0.66 1.0836 1.0402 850 104 1 171.75 51104 -0.67 1.0869 1.0414 835 105 1 172.25 51105 -0.67 1.0886 1.0417 845 106 1 172.75 51106 -0.67 1.0881 1.0408 848 107 1 173.25 51107 -0.67 1.0812 1.0388 890 108 1 173.75 51108 -0.67 1.0839 1.0357 886 109 1 174.25 51109 -0.67 1.0758 1.0317 839 110 1 174.75 51110 -0.67 1.0755 1.0270 826 111 1 175.25 51111 -0.68 1.0703 1.0220 858 112 1 175.75 51112 -0.68 1.0646 1.0174 898 113 1 176.25 51113 -0.68 1.0618 1.0134 858 114 1 176.75 51114 -0.69 1.0598 1.0103 875 115 1 177.25 51115 -0.69 1.0522 1.0083 829 116 1 177.75 51116 -0.69 1.0591 1.0073 857 117 1 178.25 51117 -0.70 1.0570 1.0072 872 118 1 178.75 51118 -0.70 1.0556 1.0079 861 119 1 179.25 51119 -0.71 1.0616 1.0093 869 120 1 179.75 51120 -0.71 1.0653 1.0112 872 121 1 180.25 51121 -0.71 1.0685 1.0132 851 122 1 180.75 51122 -0.72 1.0667 1.0154 838 123 1 181.25 51123 -0.72 1.0718 1.0174 844 124 1 181.75 51124 -0.73 1.0748 1.0190 885 125 1 182.25 51125 -0.73 1.0745 1.0201 837 126 1 182.75 51126 -0.73 1.0788 1.0207 884 127 1 183.25 51127 -0.74 1.0766 1.0209 849 128 1 183.75 51128 -0.74 1.0830 1.0208 870 129 1 184.25 51129 -0.75 1.0796 1.0203 821 130 1 184.75 51130 -0.75 1.0768 1.0197 867 131 1 185.25 51131 -0.75 1.0793 1.0189 912 132 1 185.75 51132 -0.75 1.0780 1.0181 816 133 1 186.25 51133 -0.76 1.0758 1.0173 886 134 1 186.75 51134 -0.76 1.0786 1.0166 869 135 1 187.25 51135 -0.76 1.0784 1.0161 871 136 1 187.75 51136 -0.76 1.0787 1.0157 842 137 1 188.25 51137 -0.76 1.0750 1.0154 842 138 1 188.75 51138 -0.76 1.0780 1.0151 869 139 1 189.25 51139 -0.76 1.0719 1.0149 841 140 1 189.75 51140 -0.76 1.0742 1.0147 861 141 1 190.25 51141 -0.76 1.0824 1.0144 860 142 1 190.75 51142 -0.76 1.0738 1.0143 873 143 1 191.25 51143 -0.76 1.0810 1.0142 866 144 1 191.75 51144 -0.76 1.0712 1.0141 839 145 1 192.25 51145 -0.76 1.0766 1.0140 886 146 1 192.75 51146 -0.75 1.0700 1.0139 823 147 1 193.25 51147 -0.75 1.0793 1.0139 867 148 1 193.75 51148 -0.75 1.0741 1.0138 867 149 1 194.25 51149 -0.75 1.0726 1.0138 893 150 1 194.75 51150 -0.74 1.0759 1.0137 823 151 1 195.25 51151 -0.74 1.0691 1.0134 902 152 1 195.75 51152 -0.73 1.0732 1.0132 848 153 1 196.25 51153 -0.73 1.0702 1.0130 860 154 1 196.75 51154 -0.72 1.0717 1.0125 860 155 1 197.25 51155 -0.72 1.0731 1.0119 841 156 1 197.75 51156 -0.71 1.0622 1.0111 872 157 1 198.25 51157 -0.71 1.0617 1.0100 837 158 1 198.75 51158 -0.70 1.0657 1.0086 882 159 1 199.25 51159 -0.70 1.0624 1.0069 876 160 1 199.75 51160 -0.69 1.0594 1.0050 830 161 1 200.25 51161 -0.68 1.0566 1.0031 840 162 1 200.75 51162 -0.68 1.0535 1.0014 838 163 1 201.25 51163 -0.67 1.0508 1.0000 864 164 1 201.75 51164 -0.67 1.0459 0.9989 871 165 1 202.25 51165 -0.66 1.0527 0.9984 886 166 1 202.75 51166 -0.65 1.0415 0.9983 852 167 1 203.25 51167 -0.65 1.0450 0.9987 877 168 1 203.75 51168 -0.64 1.0475 0.9996 828 169 1 204.25 51169 -0.64 1.0474 1.0009 864 170 1 204.75 51170 -0.63 1.0459 1.0025 856 171 1 205.25 51171 -0.63 1.0553 1.0038 879 172 1 205.75 51172 -0.62 1.0532 1.0053 831 173 1 206.25 51173 -0.62 1.0506 1.0064 889 174 1 206.75 51174 -0.61 1.0472 1.0070 866 175 1 207.25 51175 -0.61 1.0535 1.0070 844 176 1 207.75 51176 -0.60 1.0473 1.0063 834 177 1 208.25 51177 -0.60 1.0515 1.0049 901 178 1 208.75 51178 -0.60 1.0509 1.0029 833 179 1 209.25 51179 -0.59 1.0400 1.0002 870 180 1 209.75 51180 -0.59 1.0416 0.9970 853 181 1 210.25 51181 -0.59 1.0318 0.9936 855 182 1 210.75 51182 -0.58 1.0322 0.9903 868 183 1 211.25 51183 -0.58 1.0337 0.9875 905 184 1 211.75 51184 -0.57 1.0273 0.9851 859 185 1 212.25 51185 -0.57 1.0274 0.9832 833 186 1 212.75 51186 -0.57 1.0194 0.9818 850 187 1 213.25 51187 -0.56 1.0208 0.9808 815 188 1 213.75 51188 -0.56 1.0191 0.9800 896 189 1 214.25 51189 -0.56 1.0239 0.9795 891 190 1 214.75 51190 -0.56 1.0237 0.9791 861 191 1 215.25 51191 -0.55 1.0233 0.9786 824 192 1 215.75 51192 -0.55 1.0174 0.9786 880 193 1 216.25 51193 -0.55 1.0189 0.9785 820 194 1 216.75 51194 -0.54 1.0196 0.9786 912 195 1 217.25 51195 -0.54 1.0222 0.9787 840 196 1 217.75 51196 -0.54 1.0234 0.9789 881 197 1 218.25 51197 -0.53 1.0207 0.9792 889 198 1 218.75 51198 -0.53 1.0204 0.9796 810 199 1 219.25 51199 -0.53 1.0209 0.9802 860 200 1 219.75 51200 -0.52 1.0262 0.9808 843 201 1 220.25 51201 -0.51 1.0287 0.9814 890 202 1 220.75 51202 -0.50 1.0226 0.9820 929 203 1 221.25 51203 -0.50 1.0240 0.9824 843 204 1 221.75 51204 -0.50 1.0210 0.9828 788 205 1 222.25 51205 -0.49 1.0276 0.9830 844 206 1 222.75 51206 -0.49 1.0207 0.9830 835 207 1 223.25 51207 -0.48 1.0259 0.9828 933 208 1 223.75 51208 -0.48 1.0284 0.9825 887 209 1 224.25 51209 -0.47 1.0233 0.9820 865 210 1 224.75 51210 -0.47 1.0190 0.9815 807 211 1 225.25 51211 -0.46 1.0287 0.9810 841 212 1 225.75 51212 -0.46 1.0134 0.9806 878 213 1 226.25 51213 -0.45 1.0276 0.9802 864 214 1 226.75 51214 -0.44 1.0238 0.9801 879 215 1 227.25 51215 -0.44 1.0208 0.9803 893 216 1 227.75 51216 -0.43 1.0174 0.9808 816 217 1 228.25 51217 -0.42 1.0203 0.9815 812 218 1 228.75 51218 -0.41 1.0263 0.9827 882 219 1 229.25 51219 -0.40 1.0177 0.9841 855 220 1 229.75 51220 -0.40 1.0287 0.9858 897 221 1 230.25 51221 -0.39 1.0307 0.9876 897 222 1 230.75 51222 -0.38 1.0265 0.9893 825 223 1 231.25 51223 -0.36 1.0265 0.9909 841 224 1 231.75 51224 -0.35 1.0305 0.9921 820 225 1 232.25 51225 -0.34 1.0290 0.9931 900 226 1 232.75 51226 -0.33 1.0232 0.9939 862 227 1 233.25 51227 -0.31 1.0300 0.9944 843 228 1 233.75 51228 -0.30 1.0297 0.9947 923 229 1 234.25 51229 -0.28 1.0245 0.9949 855 230 1 234.75 51230 -0.27 1.0269 0.9950 814 231 1 235.25 51231 -0.25 1.0198 0.9953 828 232 1 235.75 51232 -0.23 1.0252 0.9953 861 233 1 236.25 51233 -0.22 1.0172 0.9954 872 234 1 236.75 51234 -0.20 1.0179 0.9954 867 235 1 237.25 51235 -0.18 1.0182 0.9956 883 236 1 237.75 51236 -0.16 1.0177 0.9958 898 237 1 238.25 51237 -0.14 1.0079 0.9961 844 238 1 238.75 51238 -0.12 1.0099 0.9965 812 239 1 239.25 51239 -0.10 1.0118 0.9970 843 240 1 239.75 51240 -0.07 1.0053 0.9975 492 $$ N Run Phi Batch Bfactor Mn(k) 0k Number Agreement between batches ========================= Rmerge in this table is the difference from Mn(Imean), but in later tables Rmerge is the difference from Mn(I+),Mn(I-) SmRmerge in table is smoothed over 11 batches $TABLE: Analysis against all Batches for all runs, New: $GRAPHS:Rmerge v Batch for all runs:N:1,13,6: :Cumulative %completeness & Anom%cmpl v Batch:N:1,9,10: :Maximum resolution limit, I/sigma > 1.0:1|240x1|1.5:1,11: :Cumulative multiplicity:N:1,12: :Imean & RMS Scatter:N:1,3,4: :Imean/RMS scatter:N:1,5: :Number of rejects:N:1,8: $$ N Batch Mn(I) RMSdev I/rms Rmerge Number Nrej Cm%poss AnoCmp MaxRes CMlplc SmRmerge $$ $$ 1 51001 37832.9 3193.8 11.85 0.032 1091 0 2.2 0.1 1.4 0.02 0.030 2 51002 34093.1 2572.6 13.25 0.032 1671 1 4.8 1.1 1.4 0.06 0.030 3 51003 37809.6 2427.8 15.57 0.028 1744 0 6.9 2.6 1.4 0.10 0.030 4 51004 37101.6 2622.6 14.15 0.029 1673 1 9.4 3.6 1.4 0.13 0.030 5 51005 34285.6 2258.6 15.18 0.029 1744 0 12.2 4.4 1.4 0.17 0.030 6 51006 34964.5 2228.0 15.69 0.029 1750 0 15.0 5.2 1.4 0.20 0.030 7 51007 35579.7 2701.4 13.17 0.031 1731 0 17.7 5.9 1.4 0.24 0.030 8 51008 36128.6 2440.7 14.80 0.029 1710 0 20.4 6.7 1.4 0.28 0.030 9 51009 30313.0 2069.4 14.65 0.032 1661 0 23.0 7.4 1.4 0.31 0.029 10 51010 34247.1 2283.3 15.00 0.031 1701 0 25.6 8.1 1.4 0.35 0.030 11 51011 37370.0 2076.4 18.00 0.026 1633 0 28.0 8.9 1.4 0.38 0.030 12 51012 33465.0 2174.3 15.39 0.030 1630 1 30.4 9.7 1.4 0.42 0.030 13 51013 40842.6 2875.4 14.20 0.029 1824 0 32.8 10.6 1.4 0.45 0.030 14 51014 29222.1 2099.3 13.92 0.033 1728 1 35.1 11.4 1.4 0.49 0.030 15 51015 36217.9 3468.8 10.44 0.030 1721 0 37.2 12.4 1.4 0.53 0.030 16 51016 36746.5 2727.8 13.47 0.031 1764 0 39.5 13.3 1.4 0.57 0.030 17 51017 34666.8 2053.1 16.89 0.030 1743 0 41.6 14.2 1.4 0.60 0.030 18 51018 35503.8 2600.9 13.65 0.031 1626 0 43.6 15.2 1.4 0.64 0.031 19 51019 34767.9 2138.3 16.26 0.029 1757 0 45.6 16.2 1.4 0.67 0.031 20 51020 34633.0 2851.0 12.15 0.032 1639 0 47.6 17.2 1.4 0.71 0.031 21 51021 34687.2 2164.9 16.02 0.029 1607 0 49.3 18.2 1.4 0.74 0.030 22 51022 28010.1 2083.7 13.44 0.034 1738 0 51.2 19.2 1.4 0.78 0.030 23 51023 33042.8 2467.3 13.39 0.033 1673 0 52.8 20.4 1.4 0.82 0.030 24 51024 38426.7 2820.0 13.63 0.028 1793 0 54.6 21.5 1.4 0.86 0.030 25 51025 37003.1 2286.3 16.19 0.028 1702 0 56.3 22.5 1.4 0.89 0.030 26 51026 36753.7 2360.8 15.57 0.029 1685 0 57.9 23.6 1.4 0.93 0.030 27 51027 33794.2 2415.9 13.99 0.034 1748 0 59.5 24.7 1.4 0.97 0.030 28 51028 38460.9 2693.3 14.28 0.030 1691 0 61.1 25.7 1.4 1.00 0.031 29 51029 34293.7 2241.1 15.30 0.031 1607 0 62.4 26.8 1.4 1.04 0.031 30 51030 37249.2 2483.4 15.00 0.030 1751 0 64.1 27.8 1.4 1.08 0.031 31 51031 34396.2 2306.9 14.91 0.031 1558 0 65.3 28.9 1.4 1.11 0.031 32 51032 32042.0 2733.8 11.72 0.035 1742 0 66.5 30.2 1.4 1.15 0.032 33 51033 33058.0 2597.0 12.73 0.036 1736 0 67.9 31.5 1.4 1.18 0.032 34 51034 38199.3 2581.2 14.80 0.031 1768 1 69.2 32.7 1.4 1.22 0.032 35 51035 37708.8 2614.6 14.42 0.031 1722 1 70.4 34.0 1.4 1.26 0.031 36 51036 34715.5 2273.7 15.27 0.033 1656 0 71.4 35.1 1.4 1.30 0.032 37 51037 41177.7 2666.5 15.44 0.028 1654 0 72.5 36.2 1.4 1.33 0.032 38 51038 31322.9 2178.7 14.38 0.034 1667 0 73.5 37.4 1.4 1.37 0.032 39 51039 40683.9 2484.9 16.37 0.027 1658 0 74.5 38.6 1.4 1.40 0.032 40 51040 32996.6 2417.3 13.65 0.032 1650 0 75.5 40.0 1.4 1.44 0.031 41 51041 35036.6 2240.8 15.64 0.031 1732 1 76.4 41.6 1.4 1.48 0.031 42 51042 31402.7 2327.3 13.49 0.034 1714 0 77.4 42.8 1.4 1.51 0.031 43 51043 37128.5 2495.2 14.88 0.032 1719 1 78.3 44.1 1.4 1.55 0.031 44 51044 33480.5 2338.0 14.32 0.033 1795 0 79.2 45.5 1.4 1.59 0.031 45 51045 37842.9 2657.5 14.24 0.030 1648 0 80.0 46.7 1.4 1.63 0.031 46 51046 35373.8 1964.5 18.01 0.029 1587 0 80.8 47.9 1.4 1.66 0.031 47 51047 37931.3 2833.8 13.39 0.030 1733 0 81.6 49.1 1.4 1.70 0.032 48 51048 35639.9 2699.8 13.20 0.033 1733 0 82.3 50.5 1.4 1.73 0.032 49 51049 33279.7 2485.0 13.39 0.032 1785 0 83.0 52.0 1.4 1.77 0.031 50 51050 33433.9 2654.8 12.59 0.031 1748 0 83.7 53.4 1.4 1.81 0.031 51 51051 32477.5 2105.3 15.43 0.033 1678 2 84.4 54.7 1.4 1.85 0.031 52 51052 28881.0 2206.3 13.09 0.033 1689 1 85.1 55.7 1.4 1.88 0.031 53 51053 36981.4 2209.7 16.74 0.027 1639 0 85.8 56.8 1.4 1.92 0.031 54 51054 37122.9 2463.8 15.07 0.030 1687 0 86.4 57.9 1.4 1.95 0.031 55 51055 37268.8 3142.8 11.86 0.033 1713 0 87.0 59.2 1.4 1.99 0.031 56 51056 37295.9 2398.4 15.55 0.030 1846 0 87.6 60.7 1.4 2.03 0.031 57 51057 37042.2 2766.2 13.39 0.032 1759 1 88.1 61.8 1.4 2.07 0.031 58 51058 35338.6 1977.2 17.87 0.028 1637 1 88.7 62.9 1.4 2.10 0.031 59 51059 33783.8 2375.0 14.22 0.033 1703 1 89.3 64.0 1.4 2.14 0.031 60 51060 36203.5 2509.2 14.43 0.029 1688 0 89.8 64.9 1.4 2.17 0.031 61 51061 37881.8 2542.3 14.90 0.031 1614 1 90.3 65.8 1.4 2.21 0.032 62 51062 33788.6 2220.2 15.22 0.033 1744 1 90.8 67.1 1.4 2.25 0.031 63 51063 36388.1 2429.3 14.98 0.032 1828 1 91.1 68.3 1.4 2.28 0.032 64 51064 39554.9 2691.0 14.70 0.032 1798 0 91.6 69.3 1.4 2.32 0.032 65 51065 33293.7 2173.8 15.32 0.033 1636 0 92.0 70.2 1.4 2.36 0.032 66 51066 39100.5 2561.8 15.26 0.030 1682 0 92.5 71.0 1.4 2.39 0.032 67 51067 38023.0 3076.1 12.36 0.034 1612 0 92.9 71.7 1.4 2.43 0.033 68 51068 36610.8 2690.0 13.61 0.033 1838 0 93.2 72.7 1.4 2.47 0.033 69 51069 35074.2 2344.5 14.96 0.032 1731 1 93.6 73.8 1.4 2.50 0.032 70 51070 35902.4 2508.3 14.31 0.033 1750 0 93.9 74.7 1.4 2.54 0.032 71 51071 34062.8 2819.5 12.08 0.035 1758 0 94.2 75.6 1.4 2.58 0.032 72 51072 40659.7 2780.8 14.62 0.031 1655 0 94.6 76.2 1.4 2.61 0.032 73 51073 38622.0 3205.8 12.05 0.031 1682 0 94.8 76.8 1.4 2.65 0.032 74 51074 34787.5 2099.0 16.57 0.030 1705 0 95.1 77.7 1.4 2.68 0.032 75 51075 32427.4 2320.7 13.97 0.033 1811 1 95.3 78.6 1.4 2.72 0.032 76 51076 28471.1 2147.2 13.26 0.035 1744 0 95.6 79.4 1.4 2.76 0.032 77 51077 32845.0 1981.0 16.58 0.031 1641 0 95.7 80.1 1.4 2.79 0.032 78 51078 33603.0 2555.0 13.15 0.033 1693 0 95.9 80.8 1.4 2.83 0.032 79 51079 33312.1 2229.0 14.94 0.031 1680 1 96.1 81.3 1.4 2.86 0.032 80 51080 33996.3 2268.8 14.98 0.031 1824 1 96.3 82.1 1.4 2.90 0.032 81 51081 33843.3 2626.9 12.88 0.035 1691 0 96.4 82.9 1.4 2.94 0.032 82 51082 35328.7 2681.1 13.18 0.032 1666 2 96.5 83.5 1.4 2.97 0.031 83 51083 33584.3 2264.7 14.83 0.033 1758 0 96.6 84.1 1.4 3.01 0.031 84 51084 39442.7 2523.4 15.63 0.029 1720 0 96.8 84.7 1.4 3.05 0.031 85 51085 37399.4 2128.1 17.57 0.027 1673 1 96.9 85.2 1.4 3.08 0.031 86 51086 32543.7 2138.8 15.22 0.031 1785 1 96.9 85.9 1.4 3.12 0.031 87 51087 42288.4 2640.6 16.01 0.028 1647 1 97.0 86.5 1.4 3.16 0.031 88 51088 33858.9 2536.4 13.35 0.032 1804 1 97.1 87.1 1.4 3.19 0.031 89 51089 36023.5 2313.0 15.57 0.030 1699 0 97.1 87.6 1.4 3.23 0.031 90 51090 38086.3 3169.5 12.02 0.031 1661 0 97.2 88.1 1.4 3.26 0.030 91 51091 33726.9 2745.1 12.29 0.033 1709 1 97.2 88.5 1.4 3.30 0.031 92 51092 30997.4 2269.7 13.66 0.033 1712 0 97.3 89.1 1.4 3.34 0.031 93 51093 33637.3 2204.6 15.26 0.032 1742 1 97.3 89.5 1.4 3.37 0.031 94 51094 37159.6 2257.1 16.46 0.028 1695 1 97.4 90.0 1.4 3.41 0.032 95 51095 32968.9 2173.1 15.17 0.033 1774 0 97.4 90.3 1.4 3.45 0.032 96 51096 35280.4 2812.2 12.55 0.034 1653 0 97.4 90.7 1.4 3.48 0.032 97 51097 34103.3 2346.1 14.54 0.032 1728 2 97.5 91.1 1.4 3.52 0.032 98 51098 33391.3 2120.1 15.75 0.031 1748 1 97.5 91.5 1.4 3.56 0.032 99 51099 35921.0 2441.9 14.71 0.033 1751 0 97.5 91.8 1.4 3.59 0.032 100 51100 38614.1 2478.4 15.58 0.029 1731 3 97.6 92.1 1.4 3.63 0.032 101 51101 35549.3 2642.1 13.45 0.035 1759 2 97.6 92.3 1.4 3.67 0.033 102 51102 40065.1 2963.4 13.52 0.033 1688 2 97.6 92.6 1.4 3.70 0.032 103 51103 32785.8 2172.9 15.09 0.034 1697 1 97.6 92.9 1.4 3.74 0.032 104 51104 35875.9 2066.7 17.36 0.030 1666 0 97.6 93.1 1.4 3.77 0.032 105 51105 34050.5 2333.8 14.59 0.034 1688 0 97.7 93.3 1.4 3.81 0.032 106 51106 33841.8 1969.9 17.18 0.030 1694 1 97.7 93.5 1.4 3.84 0.031 107 51107 36584.6 2226.9 16.43 0.030 1777 0 97.7 93.7 1.4 3.88 0.032 108 51108 37346.6 2380.5 15.69 0.030 1770 1 97.7 93.9 1.4 3.92 0.031 109 51109 36228.7 2439.2 14.85 0.032 1674 0 97.7 94.1 1.4 3.96 0.031 110 51110 37026.9 2488.3 14.88 0.031 1652 0 97.7 94.3 1.4 3.99 0.031 111 51111 33748.0 2716.3 12.42 0.033 1713 0 97.7 94.4 1.4 4.03 0.030 112 51112 37933.1 2722.2 13.93 0.029 1795 0 97.8 94.6 1.4 4.06 0.030 113 51113 40056.5 2661.4 15.05 0.030 1711 0 97.8 94.7 1.4 4.10 0.029 114 51114 37008.7 2466.6 15.00 0.030 1747 0 97.8 94.8 1.4 4.14 0.029 115 51115 37776.0 2140.3 17.65 0.027 1656 2 97.8 94.9 1.4 4.17 0.029 116 51116 35192.5 2040.0 17.25 0.027 1708 0 97.8 95.0 1.4 4.21 0.029 117 51117 38867.9 2420.0 16.06 0.027 1744 1 97.9 95.1 1.4 4.25 0.029 118 51118 33830.6 2200.8 15.37 0.031 1717 0 97.9 95.2 1.4 4.28 0.030 119 51119 35590.6 2313.1 15.39 0.029 1735 0 97.9 95.3 1.4 4.32 0.030 120 51120 36982.3 2349.4 15.74 0.029 1741 1 97.9 95.4 1.4 4.36 0.030 121 51121 31424.4 2162.1 14.53 0.034 1701 1 98.0 95.4 1.4 4.39 0.031 122 51122 31467.1 2229.3 14.12 0.035 1674 1 98.0 95.5 1.4 4.43 0.032 123 51123 34791.7 2559.6 13.59 0.035 1684 1 98.0 95.6 1.4 4.47 0.032 124 51124 33989.9 2434.5 13.96 0.033 1770 0 98.1 95.6 1.4 4.50 0.033 125 51125 31688.0 2716.1 11.67 0.038 1670 0 98.1 95.7 1.4 4.54 0.034 126 51126 35236.7 2875.1 12.26 0.033 1763 0 98.2 95.7 1.4 4.58 0.034 127 51127 35877.0 2531.0 14.17 0.035 1689 0 98.2 95.8 1.4 4.61 0.034 128 51128 30390.8 2257.0 13.46 0.036 1740 0 98.3 95.8 1.4 4.65 0.034 129 51129 30728.2 2132.9 14.41 0.035 1640 2 98.3 95.9 1.4 4.68 0.034 130 51130 34293.9 2482.8 13.81 0.035 1728 1 98.4 95.9 1.4 4.72 0.034 131 51131 40637.8 2434.7 16.69 0.029 1824 1 98.4 96.0 1.4 4.76 0.034 132 51132 33812.4 2636.9 12.82 0.035 1629 0 98.5 96.0 1.4 4.80 0.034 133 51133 32974.1 2323.1 14.19 0.034 1771 1 98.6 96.0 1.4 4.83 0.033 134 51134 33277.7 2058.1 16.17 0.031 1735 0 98.6 96.1 1.4 4.87 0.033 135 51135 32648.9 2234.9 14.61 0.036 1738 1 98.7 96.1 1.4 4.91 0.033 136 51136 31899.5 2234.3 14.28 0.033 1677 0 98.7 96.1 1.4 4.94 0.033 137 51137 39764.5 2603.7 15.27 0.030 1677 0 98.7 96.1 1.4 4.98 0.032 138 51138 32881.8 2470.8 13.31 0.033 1738 1 98.7 96.2 1.4 5.02 0.033 139 51139 35536.1 2366.1 15.02 0.033 1679 3 98.7 96.2 1.4 5.05 0.033 140 51140 34404.8 2420.9 14.21 0.032 1722 0 98.7 96.2 1.4 5.09 0.033 141 51141 33884.0 2461.3 13.77 0.033 1718 2 98.7 96.2 1.4 5.13 0.034 142 51142 34102.3 2568.4 13.28 0.036 1746 0 98.7 96.3 1.4 5.16 0.034 143 51143 32638.2 2718.2 12.01 0.037 1727 1 98.7 96.3 1.4 5.20 0.034 144 51144 39100.2 2856.6 13.69 0.033 1674 1 98.7 96.3 1.4 5.24 0.034 145 51145 33442.7 2822.9 11.85 0.037 1759 1 98.7 96.3 1.4 5.27 0.034 146 51146 32358.1 2378.3 13.61 0.037 1645 1 98.7 96.4 1.4 5.31 0.034 147 51147 34544.2 2276.1 15.18 0.034 1733 0 98.7 96.4 1.4 5.35 0.035 148 51148 35799.6 2663.9 13.44 0.032 1733 1 98.7 96.4 1.4 5.38 0.035 149 51149 34157.2 2522.6 13.54 0.033 1784 2 98.8 96.4 1.4 5.42 0.034 150 51150 35021.6 2291.7 15.28 0.033 1639 1 98.8 96.5 1.4 5.46 0.034 151 51151 33546.9 2763.1 12.14 0.036 1800 0 98.8 96.5 1.4 5.50 0.034 152 51152 33310.3 2185.6 15.24 0.032 1689 0 98.8 96.5 1.4 5.53 0.034 153 51153 34136.4 2466.1 13.84 0.032 1717 2 98.8 96.6 1.4 5.57 0.033 154 51154 32305.1 2352.9 13.73 0.035 1718 1 98.8 96.6 1.4 5.61 0.033 155 51155 35760.4 2473.8 14.46 0.033 1682 0 98.8 96.6 1.4 5.64 0.033 156 51156 36474.9 2546.8 14.32 0.032 1740 0 98.8 96.6 1.4 5.68 0.034 157 51157 34454.8 2214.3 15.56 0.033 1673 0 98.8 96.6 1.4 5.71 0.034 158 51158 33078.7 2160.7 15.31 0.033 1761 0 98.8 96.6 1.4 5.75 0.034 159 51159 33640.2 2426.7 13.86 0.034 1749 1 98.8 96.6 1.4 5.79 0.034 160 51160 29231.9 2092.4 13.97 0.037 1659 1 98.8 96.6 1.4 5.82 0.035 161 51161 35458.6 2611.8 13.58 0.037 1680 0 98.8 96.6 1.4 5.86 0.035 162 51162 33898.7 2497.9 13.57 0.037 1675 1 98.8 96.6 1.4 5.90 0.035 163 51163 36536.3 2508.7 14.56 0.035 1727 0 98.8 96.6 1.4 5.93 0.035 164 51164 34346.7 2296.8 14.95 0.035 1741 0 98.8 96.6 1.4 5.97 0.035 165 51165 34910.8 2351.1 14.85 0.036 1770 0 98.8 96.6 1.4 6.01 0.036 166 51166 37162.1 3118.9 11.92 0.038 1704 2 98.8 96.6 1.4 6.04 0.036 167 51167 37784.9 2420.6 15.61 0.034 1754 2 98.8 96.6 1.4 6.08 0.036 168 51168 36774.2 2540.3 14.48 0.035 1654 1 98.8 96.7 1.4 6.12 0.036 169 51169 37344.9 2768.8 13.49 0.035 1727 0 98.8 96.7 1.4 6.15 0.036 170 51170 34222.1 2492.3 13.73 0.036 1712 2 98.8 96.7 1.4 6.19 0.035 171 51171 32877.6 2667.8 12.32 0.036 1756 1 98.8 96.7 1.4 6.23 0.035 172 51172 37934.2 3001.1 12.64 0.037 1662 1 98.8 96.7 1.4 6.26 0.035 173 51173 36488.4 2630.0 13.87 0.036 1778 0 98.8 96.7 1.4 6.30 0.035 174 51174 38119.0 2422.1 15.74 0.032 1731 2 98.8 96.7 1.4 6.34 0.035 175 51175 38609.3 2509.2 15.39 0.033 1686 0 98.8 96.7 1.4 6.37 0.035 176 51176 32441.9 2605.7 12.45 0.039 1668 1 98.8 96.7 1.4 6.41 0.036 177 51177 37808.7 2648.3 14.28 0.034 1800 1 98.8 96.7 1.4 6.44 0.035 178 51178 32214.2 2717.0 11.86 0.038 1666 1 98.8 96.7 1.4 6.48 0.035 179 51179 35240.8 2463.0 14.31 0.035 1739 0 98.8 96.7 1.4 6.52 0.035 180 51180 36973.1 3476.4 10.64 0.037 1704 1 98.8 96.7 1.4 6.55 0.034 181 51181 38249.6 2933.1 13.04 0.032 1710 1 98.8 96.7 1.4 6.59 0.035 182 51182 34536.3 2475.8 13.95 0.035 1734 0 98.8 96.7 1.4 6.63 0.035 183 51183 36933.1 2396.8 15.41 0.031 1810 1 98.8 96.7 1.4 6.66 0.034 184 51184 35105.2 2630.1 13.35 0.034 1718 0 98.8 96.7 1.4 6.70 0.034 185 51185 33714.4 2462.5 13.69 0.036 1665 0 98.8 96.7 1.4 6.74 0.034 186 51186 35633.5 2559.1 13.92 0.033 1699 1 98.8 96.7 1.4 6.77 0.034 187 51187 37501.2 2363.6 15.87 0.032 1630 1 98.8 96.7 1.4 6.81 0.033 188 51188 37530.4 2391.4 15.69 0.032 1789 0 98.8 96.7 1.4 6.84 0.034 189 51189 33393.5 2134.8 15.64 0.033 1781 0 98.8 96.7 1.4 6.88 0.033 190 51190 33935.5 2482.1 13.67 0.034 1722 0 98.8 96.7 1.4 6.92 0.033 191 51191 33939.9 2457.9 13.81 0.035 1647 0 98.8 96.8 1.4 6.95 0.033 192 51192 34388.4 2405.5 14.30 0.036 1759 1 98.8 96.8 1.4 6.99 0.033 193 51193 39843.8 2486.4 16.02 0.030 1640 0 98.8 96.8 1.4 7.02 0.033 194 51194 32585.5 2007.8 16.23 0.033 1823 1 98.8 96.8 1.4 7.06 0.033 195 51195 34016.6 2268.8 14.99 0.033 1680 0 98.8 96.8 1.4 7.10 0.033 196 51196 36816.2 2460.3 14.96 0.031 1761 3 98.8 96.8 1.4 7.14 0.033 197 51197 33940.7 2205.7 15.39 0.033 1778 0 98.8 96.8 1.4 7.17 0.034 198 51198 31794.1 2259.9 14.07 0.035 1619 0 98.8 96.8 1.4 7.21 0.034 199 51199 38238.7 2435.8 15.70 0.031 1720 1 98.8 96.8 1.4 7.24 0.033 200 51200 32244.8 2454.9 13.13 0.037 1686 0 98.8 96.8 1.4 7.28 0.034 201 51201 32630.1 2548.6 12.80 0.038 1780 0 98.8 96.8 1.4 7.32 0.033 202 51202 34768.8 2555.4 13.61 0.035 1858 0 98.8 96.8 1.4 7.35 0.034 203 51203 32939.7 2152.4 15.30 0.033 1685 1 98.8 96.8 1.4 7.39 0.034 204 51204 35059.9 2583.1 13.57 0.035 1576 0 98.8 96.8 1.4 7.42 0.034 205 51205 38439.9 2425.0 15.85 0.030 1688 1 98.8 96.8 1.4 7.46 0.034 206 51206 37458.0 2618.5 14.31 0.034 1670 0 98.8 96.8 1.4 7.49 0.034 207 51207 34734.1 2737.7 12.69 0.037 1862 1 98.8 96.8 1.4 7.53 0.034 208 51208 35322.7 2542.8 13.89 0.035 1774 1 98.8 96.8 1.4 7.57 0.034 209 51209 38422.8 2583.1 14.87 0.033 1730 1 98.8 96.8 1.4 7.61 0.034 210 51210 38789.0 2728.2 14.22 0.033 1612 0 98.8 96.8 1.4 7.64 0.034 211 51211 35229.8 2233.2 15.78 0.032 1681 1 98.8 96.8 1.4 7.68 0.034 212 51212 36230.0 3139.4 11.54 0.035 1756 1 98.8 96.8 1.4 7.71 0.034 213 51213 31800.8 2150.1 14.79 0.034 1728 1 98.8 96.8 1.4 7.75 0.034 214 51214 29270.7 2365.2 12.38 0.039 1757 1 98.8 96.8 1.4 7.79 0.033 215 51215 35588.1 2776.0 12.82 0.036 1786 1 98.8 96.8 1.4 7.83 0.033 216 51216 38061.8 2346.2 16.22 0.030 1632 1 98.8 96.8 1.4 7.86 0.033 217 51217 39437.6 2257.7 17.47 0.029 1624 2 98.8 96.8 1.4 7.90 0.033 218 51218 37290.7 2512.0 14.85 0.032 1764 2 98.8 96.8 1.4 7.93 0.034 219 51219 36069.8 2392.1 15.08 0.031 1710 3 98.8 96.8 1.4 7.97 0.033 220 51220 34587.9 2388.7 14.48 0.033 1794 1 98.8 96.8 1.4 8.01 0.033 221 51221 36208.0 2531.6 14.30 0.034 1793 0 98.8 96.8 1.4 8.05 0.032 222 51222 32960.1 2533.8 13.01 0.037 1650 0 98.8 96.8 1.4 8.08 0.032 223 51223 34638.1 2311.5 14.99 0.032 1682 1 98.8 96.8 1.4 8.12 0.032 224 51224 36022.1 2346.8 15.35 0.030 1639 0 98.8 96.8 1.4 8.15 0.032 225 51225 38539.1 2524.6 15.27 0.030 1800 3 98.8 96.8 1.4 8.19 0.032 226 51226 37591.2 2979.7 12.62 0.031 1724 0 98.8 96.8 1.4 8.23 0.032 227 51227 35129.2 2454.5 14.31 0.030 1686 1 98.8 96.8 1.4 8.26 0.032 228 51228 32981.6 2485.4 13.27 0.034 1846 3 98.8 96.8 1.4 8.30 0.032 229 51229 34529.5 2624.9 13.15 0.034 1708 1 98.8 96.9 1.4 8.34 0.031 230 51230 34458.8 2395.9 14.38 0.032 1628 0 98.8 96.9 1.4 8.37 0.031 231 51231 37004.5 2391.5 15.47 0.030 1656 2 98.8 96.9 1.4 8.41 0.031 232 51232 35478.6 2010.3 17.65 0.028 1722 2 98.8 96.9 1.4 8.44 0.032 233 51233 31502.7 2442.3 12.90 0.035 1743 1 98.8 96.9 1.4 8.48 0.031 234 51234 33293.5 2467.4 13.49 0.031 1734 1 98.8 96.9 1.4 8.52 0.031 235 51235 32834.2 2282.9 14.38 0.031 1766 0 98.8 96.9 1.4 8.56 0.031 236 51236 35702.3 2445.4 14.60 0.031 1796 1 98.8 96.9 1.4 8.59 0.031 237 51237 42956.3 2780.6 15.45 0.029 1688 1 98.8 96.9 1.4 8.63 0.031 238 51238 31193.2 1985.1 15.71 0.031 1624 1 98.8 96.9 1.4 8.66 0.031 239 51239 33548.0 2370.4 14.15 0.030 1686 1 98.8 96.9 1.4 8.70 0.031 240 51240 37938.9 2465.7 15.39 0.031 984 0 98.8 96.9 1.4 8.72 0.031 $$ N Batch Mn(I) RMSdev I/rms Rmerge Number Nrej Cm%poss AnoCmp MaxRes CMlplc SmRmerge Correlation coefficients for anomalous differences & Imean between random half-datasets (CC1/2) =============================================================================================== CC(1/2) values (for Imean and anomalous differences) are calculated by splitting the data randomly in half The RMS Correlation Ratio (RCR) is calculated from a scatter plot of pairs of DeltaI(anom) from the two subsets (halves) by comparing the RMS value (excluding extremes) projected on the line with slope = 1 ('correlation') with the RMS value perpendicular to this ('error'). This ratio will be > 1 if there is a significant anomalous signal $TABLE: Correlations CC(1/2) within dataset, New: $GRAPHS: Anom & Imean CCs v resolution:0|0.52503x0|1:2,4,7: : RMS correlation ratio :0|0.52503x0|3.21884:2,6: $$ N 1/d^2 Dmid CCanom Nanom RCRanom CC1/2 NImean $$ $$ 1 0.0088 10.69 0.701 89 2.381 1.000 179 2 0.0263 6.17 0.825 196 3.219 1.000 305 3 0.0438 4.78 0.684 276 2.306 1.000 389 4 0.0613 4.04 0.505 330 1.742 1.000 437 5 0.0788 3.56 0.338 388 1.421 1.000 501 6 0.0963 3.22 0.484 420 1.689 1.000 530 7 0.1138 2.96 0.530 479 1.805 1.000 591 8 0.1313 2.76 0.455 505 1.632 1.000 618 9 0.1488 2.59 0.322 535 1.395 0.999 660 10 0.1663 2.45 0.358 581 1.452 0.999 698 11 0.1838 2.33 0.279 608 1.331 0.999 732 12 0.2013 2.23 0.302 633 1.365 0.999 753 13 0.2188 2.14 0.230 669 1.263 0.999 792 14 0.2363 2.06 0.261 681 1.302 0.999 811 15 0.2538 1.99 0.130 712 1.139 0.998 858 16 0.2713 1.92 0.170 707 1.187 0.998 853 17 0.2888 1.86 0.166 748 1.182 0.997 898 18 0.3063 1.81 0.221 769 1.252 0.996 926 19 0.3238 1.76 0.141 804 1.153 0.995 969 20 0.3413 1.71 0.172 816 1.189 0.996 963 21 0.3588 1.67 0.235 840 1.271 0.992 997 22 0.3763 1.63 0.276 862 1.327 0.990 1006 23 0.3938 1.59 0.240 906 1.277 0.993 1049 24 0.4113 1.56 0.063 926 1.065 0.994 1054 25 0.4288 1.53 0.136 953 1.146 0.995 1101 26 0.4463 1.50 0.116 972 1.123 0.994 1084 27 0.4638 1.47 0.136 1003 1.146 0.994 1129 28 0.4813 1.44 0.117 903 1.125 0.988 1127 29 0.4988 1.42 -0.074 498 0.928 0.967 1035 30 0.5163 1.39 -0.039 273 0.961 0.941 914 $$ Overall: 0.443 19082 1.609 1.000 23959 CCanom Nanom RCRanom CC1/2 NImean Analysis of anisotropy of data ============================== Mn(I/sd) and half-dataset correlation coefficients CC(1/2) are analysed by resolution within an maxangle of 20 degrees of h k plane and of l axis weighted according to angle, w = [cos(angle) - cos(maxangle)]/[1 - cos(maxangle)], Directions for analysis: Plane d12: h k plane d3: l axis $TABLE: Anisotropy analysis of CC(1/2) and I/sd, New: $GRAPHS: Imean CCs v resolution:0|0.52503x0|1:2,4,5: : Mn(I/sd) v resolution:0|0.52503x0|96.6913:2,6,7: : Projected Imean CCs v resolution:0|0.52503x0|1:2,8,9: $$ N 1/d^2 Dmid CC_d12 CC_d3 (I/sd)d12 (I/sd)d3 CCp1 CCp3 $$ $$ 1 0.0088 10.69 1.000 1.000 41.13 47.54 1.000 1.000 2 0.0263 6.17 1.000 1.000 41.58 61.04 1.000 1.000 3 0.0438 4.78 1.000 1.000 47.46 76.28 1.000 1.000 4 0.0613 4.04 1.000 1.000 59.87 75.40 1.000 1.000 5 0.0788 3.56 0.999 1.000 54.04 93.30 1.000 1.000 6 0.0963 3.22 1.000 1.000 53.87 96.69 1.000 1.000 7 0.1138 2.96 0.999 1.000 45.82 77.09 0.999 1.000 8 0.1313 2.76 1.000 1.000 39.38 63.96 0.999 0.999 9 0.1488 2.59 0.999 0.999 38.33 60.18 0.999 0.999 10 0.1663 2.45 0.999 1.000 38.34 51.48 0.999 0.999 11 0.1838 2.33 0.999 1.000 36.97 61.92 0.999 1.000 12 0.2013 2.23 0.999 1.000 33.69 57.81 0.999 - 13 0.2188 2.14 0.998 1.000 33.41 51.48 0.998 0.999 14 0.2363 2.06 0.998 1.000 28.81 48.02 0.997 0.999 15 0.2538 1.99 0.997 0.999 27.64 47.05 0.996 - 16 0.2713 1.92 0.997 1.000 27.14 37.14 0.997 0.999 17 0.2888 1.86 0.996 1.000 23.82 36.09 0.996 0.998 18 0.3063 1.81 0.996 0.998 20.08 38.64 0.994 - 19 0.3238 1.76 0.995 0.998 19.08 26.16 0.994 0.998 20 0.3413 1.71 0.996 0.999 17.03 31.92 0.992 - 21 0.3588 1.67 0.992 0.998 16.86 23.43 0.993 0.996 22 0.3763 1.63 0.993 0.997 15.09 30.09 0.995 - 23 0.3938 1.59 0.995 0.997 14.39 23.04 0.993 0.996 24 0.4113 1.56 0.993 0.994 12.69 19.88 0.980 - 25 0.4288 1.53 0.994 0.998 11.35 19.22 0.988 0.997 26 0.4463 1.50 0.993 0.998 10.48 21.07 0.989 - 27 0.4638 1.47 0.994 0.996 9.00 13.57 0.988 0.993 28 0.4813 1.44 0.978 0.999 7.64 16.34 0.964 - 29 0.4988 1.42 0.966 0.993 5.25 7.26 0.962 0.994 30 0.5163 1.39 0.944 0.991 3.99 7.66 0.961 - $$ Overall: 1.000 1.000 23.81 37.54 1.000 1.000 CC_d12 CC_d3 (I/sd)d12 (I/sd)d3 CCp1 CCp3 Rmrg :- conventional Rmerge = Sum(|Ihl - |)/Sum() Rcum :- Rmrg up to this range Rfull :- Rmrg for fully-recorded observations only Rmeas :- multiplicity-independent R = Sum(Sqrt(N/(N-1))(|Ihl - |))/Sum() Rpim :- Precision-indicating R = Sum(Sqrt(1/(N-1))(|Ihl - |))/Sum() Nmeas :- Number of observations used in statistics Av_I :- unmerged Ihl averaged in bin RMSdev :- rms scatter of observations from mean I/RMS :- / rms scatter = Av_I/RMSdev sd :- average standard deviation derived from experimental SDs, after application of SdFac SdB SdAdd 'correction' terms Mn(I/sd):- average < merged/sd() > ~= signal/noise Frcbias :- partial bias = Mean( Mn(If) - Ip )/Mean( Mn(I) ) for mixed sets only (If is a full if present, else the partial with the smallest number of parts) All statistics in this table are with I+ or I- sets (anomalous on) By 4sinTheta/Lambda^2 bins (all statistics use Mn(I+),Mn(I-)etc) ---------------------------------------------------------------- $TABLE: Analysis against resolution, New: $GRAPHS:I/sigma, Mean Mn(I)/sd(Mn(I)):0|0.52503x0|78.3288:2,13,14: :Rmerge, Rfull, Rmeas, Rpim v Resolution:0|0.52503x0|0.215317:2,4,5,6,7: :Average I, RMSdeviation and Sd:0|0.52503x0|219637:2,10,11,12: :Fractional bias:0|0.52503x-0.0619697|0.112055:2,15: $$ N 1/d^2 Dmid Rmrg Rfull Rcum Rmeas Rpim Nmeas AvI RMSdev sd I/RMS Mn(I/sd) FrcBias $$ $$ 1 0.0088 10.69 0.013 0.018 0.013 0.014 0.006 1377 165299 5066 5060 32.6 61.3 -0.023 2 0.0263 6.17 0.014 0.015 0.013 0.015 0.006 2625 95103 3033 3522 31.4 58.3 -0.015 3 0.0438 4.78 0.014 0.016 0.014 0.016 0.007 3484 160125 5244 5027 30.5 69.3 -0.016 4 0.0613 4.04 0.015 0.015 0.014 0.017 0.007 4005 219637 6468 6388 34.0 78.3 -0.015 5 0.0788 3.56 0.016 0.016 0.015 0.018 0.008 4612 180761 5482 5562 33.0 74.6 -0.013 6 0.0963 3.22 0.017 0.016 0.015 0.019 0.008 4891 145512 4493 4772 32.4 70.1 -0.015 7 0.1138 2.96 0.019 0.017 0.016 0.021 0.009 5494 88031 3276 3387 26.9 58.8 -0.014 8 0.1313 2.76 0.021 0.020 0.016 0.024 0.010 5751 65620 2881 2802 22.8 51.7 -0.011 9 0.1488 2.59 0.033 0.032 0.017 0.037 0.016 6101 55038 3433 2552 16.0 49.0 -0.007 10 0.1663 2.45 0.037 0.031 0.019 0.041 0.018 6482 48088 3341 2367 14.4 47.1 -0.013 11 0.1838 2.33 0.039 0.031 0.020 0.043 0.019 6730 47969 3593 2386 13.4 46.5 -0.014 12 0.2013 2.23 0.038 0.035 0.021 0.042 0.018 6999 40376 3032 2160 13.3 43.1 -0.021 13 0.2188 2.14 0.037 0.035 0.022 0.042 0.018 7260 36879 2560 2077 14.4 41.7 -0.033 14 0.2363 2.06 0.041 0.039 0.022 0.045 0.020 7391 31956 2538 1897 12.6 37.8 -0.033 15 0.2538 1.99 0.048 0.045 0.023 0.053 0.024 7778 24305 2111 1655 11.5 33.9 -0.047 16 0.2713 1.92 0.051 0.044 0.024 0.057 0.025 7764 21286 1983 1536 10.7 31.7 -0.044 17 0.2888 1.86 0.059 0.049 0.024 0.066 0.030 8068 15797 1714 1325 9.2 27.3 -0.045 18 0.3063 1.81 0.065 0.055 0.025 0.073 0.033 8336 12938 1610 1191 8.0 24.5 -0.054 19 0.3238 1.76 0.071 0.065 0.026 0.081 0.037 8605 10638 1409 1092 7.5 22.4 -0.062 20 0.3413 1.71 0.074 0.067 0.026 0.084 0.038 8576 9402 1327 1026 7.1 20.9 -0.061 21 0.3588 1.67 0.081 0.065 0.027 0.092 0.042 8826 7757 1167 942 6.6 19.0 -0.049 22 0.3763 1.63 0.092 0.085 0.027 0.104 0.048 8837 7481 1306 925 5.7 18.4 -0.028 23 0.3938 1.59 0.089 0.082 0.028 0.100 0.045 9204 6442 1042 885 6.2 16.9 0.031 24 0.4113 1.56 0.084 0.062 0.028 0.095 0.043 9174 5561 836 837 6.6 15.4 0.039 25 0.4288 1.53 0.089 0.060 0.029 0.100 0.045 9550 4744 762 783 6.2 13.9 0.044 26 0.4463 1.50 0.091 0.060 0.029 0.103 0.047 9277 4072 658 737 6.2 12.6 0.045 27 0.4638 1.47 0.093 0.064 0.029 0.105 0.048 9633 3245 530 673 6.1 11.0 0.041 28 0.4813 1.44 0.104 0.070 0.030 0.119 0.056 8543 2771 498 626 5.6 9.3 0.042 29 0.4988 1.42 0.145 0.084 0.030 0.171 0.088 5378 1834 504 531 3.6 5.9 0.112 30 0.5163 1.39 0.179 0.088 0.030 0.215 0.117 3685 1482 445 494 3.3 4.5 0.059 $$ Overall: 0.030 0.024 0.030 0.033 0.015 204436 35224 2477 1759 14.2 29.3 -0.018 N 1/d^2 Dmid Rmrg Rfull Rcum Rmeas Rpim Nmeas AvI RMSdev sd I/RMS Mn(I/sd) FrcBias By 4sinTheta/Lambda^2 bins (statistics with and without anomalous) ------------------------------------------------------------------ Statistics labelled 'Ov' are relative to the overall mean I+/-, ignoring anomalous Other statistics are with either I+ or I- sets, for acentrics, ie with anomalous $TABLE: Analysis against resolution, with & without anomalous (Ov), New: $GRAPHS:Rmerge, Rmeas, Rpim v Resolution:0|0.52503x0|0.21766:2,4,5,8,9,10,11: $$ N 1/d^2 Dmid Rmrg RmrgOv Rcum RcumOv Rmeas RmeasOv Rpim RpimOv Nmeas $$ $$ 1 0.0088 10.69 0.013 0.018 0.013 0.018 0.014 0.019 0.006 0.006 1377 2 0.0263 6.17 0.014 0.021 0.013 0.020 0.015 0.023 0.006 0.007 2626 3 0.0438 4.78 0.014 0.019 0.014 0.019 0.016 0.020 0.007 0.006 3484 4 0.0613 4.04 0.015 0.018 0.014 0.019 0.017 0.019 0.007 0.006 4005 5 0.0788 3.56 0.016 0.019 0.015 0.019 0.018 0.020 0.008 0.006 4612 6 0.0963 3.22 0.017 0.020 0.015 0.019 0.019 0.021 0.008 0.007 4891 7 0.1138 2.96 0.019 0.023 0.016 0.019 0.021 0.025 0.009 0.008 5494 8 0.1313 2.76 0.021 0.026 0.016 0.020 0.024 0.027 0.010 0.009 5751 9 0.1488 2.59 0.033 0.037 0.017 0.021 0.037 0.039 0.016 0.012 6101 10 0.1663 2.45 0.037 0.042 0.019 0.022 0.041 0.045 0.018 0.014 6482 11 0.1838 2.33 0.039 0.045 0.020 0.024 0.043 0.047 0.019 0.015 6730 12 0.2013 2.23 0.038 0.044 0.021 0.025 0.042 0.046 0.018 0.015 6999 13 0.2188 2.14 0.037 0.042 0.022 0.026 0.042 0.045 0.018 0.014 7264 14 0.2363 2.06 0.041 0.045 0.022 0.026 0.045 0.048 0.020 0.015 7399 15 0.2538 1.99 0.048 0.052 0.023 0.027 0.053 0.055 0.024 0.018 7798 16 0.2713 1.92 0.051 0.056 0.024 0.028 0.057 0.059 0.025 0.019 7789 17 0.2888 1.86 0.059 0.065 0.024 0.029 0.066 0.069 0.030 0.023 8096 18 0.3063 1.81 0.065 0.073 0.025 0.029 0.073 0.077 0.033 0.025 8368 19 0.3238 1.76 0.071 0.081 0.026 0.030 0.081 0.086 0.037 0.028 8636 20 0.3413 1.71 0.074 0.087 0.026 0.031 0.084 0.092 0.038 0.030 8604 21 0.3588 1.67 0.081 0.094 0.027 0.031 0.092 0.100 0.042 0.033 8857 22 0.3763 1.63 0.092 0.105 0.027 0.032 0.104 0.111 0.048 0.037 8856 23 0.3938 1.59 0.089 0.099 0.028 0.033 0.100 0.105 0.045 0.034 9219 24 0.4113 1.56 0.084 0.095 0.028 0.033 0.095 0.101 0.043 0.033 9178 25 0.4288 1.53 0.089 0.098 0.029 0.033 0.100 0.104 0.045 0.034 9550 26 0.4463 1.50 0.091 0.100 0.029 0.034 0.103 0.106 0.047 0.035 9277 27 0.4638 1.47 0.093 0.102 0.029 0.034 0.105 0.108 0.048 0.036 9633 28 0.4813 1.44 0.104 0.116 0.030 0.034 0.119 0.124 0.056 0.043 8670 29 0.4988 1.42 0.145 0.167 0.030 0.035 0.171 0.184 0.088 0.075 5757 30 0.5163 1.39 0.179 0.192 0.030 0.035 0.215 0.218 0.117 0.100 4068 $$ Overall: 0.030 0.035 0.030 0.035 0.033 0.037 0.015 0.012 204436 N 1/d^2 Dmid Rmrg RmrgOv Rcum RcumOv Rmeas RmeasOv Rpim RpimOv Nmeas By intensity bins ----------------- All statistics in this table are with I+ or I- sets (anomalous on) $TABLE: Analysis against intensity, New: $GRAPHS:Rmerge v Intensity:N:1,2,4,5: $$ Imax Rmrg Rcum Rmeas Rpim Nmeas AvI RMSdev sd I/RMS Mn(I/sd) FrcBias $$ $$ 5795 0.104 0.104 0.118 0.055 84229 2266 386 592 5.9 8.9 0.008 12275 0.068 0.082 0.076 0.035 35062 8615 879 1084 9.8 23.4 -0.018 19618 0.058 0.073 0.065 0.029 19071 15549 1336 1441 11.6 32.0 -0.027 28097 0.049 0.066 0.055 0.024 13536 23662 1745 1784 13.6 39.5 -0.033 38130 0.043 0.060 0.048 0.021 10111 32853 2071 2112 15.9 47.2 -0.028 50388 0.038 0.056 0.042 0.019 7863 43993 2467 2474 17.8 53.5 -0.027 66217 0.035 0.052 0.039 0.017 7014 57816 2942 2882 19.7 60.2 -0.025 88454 0.032 0.048 0.036 0.015 7168 76270 3627 3387 21.0 68.9 -0.023 126585 0.028 0.044 0.031 0.013 6380 105725 4421 4136 23.9 76.5 -0.016 2246823 0.017 0.030 0.019 0.008 14002 273012 7438 7833 36.7 97.3 -0.014 $$ Overall: 0.030 0.030 0.033 0.015 204436 35224 2477 1759 14.2 29.3 -0.018 Imax Rmrg Rcum Rmeas Rpim Nmeas AvI RMSdev sd I/RMS Mn(I/sd) FrcBias Completeness and multiplicity, including reflections measured only once ======================================================================= %poss is completeness in the shell, C%poss in cumulative to that resolution The anomalous completeness values (AnomCmpl) are the percentage of possible anomalous differences measured AnomFrc is the % of measured acentric reflections for which an anomalous difference has been measured $TABLE: Completeness & multiplicity v. resolution, New: $GRAPHS:Completeness v Resolution :0|0.52503x0|100:2,7,8,10,11: :Multiplicity v Resolution:0|0.52503x0|9.28382:2,9,12: $$ N 1/d^2 Dmid Nmeas Nref Ncent %poss C%poss Mlplct AnoCmp AnoFrc AnoMlt $$ $$ 1 0.0088 10.69 1381 183 94 95.7 95.7 7.5 98.9 100.0 5.3 2 0.0263 6.17 2629 308 110 100.0 98.5 8.5 100.0 100.0 5.2 3 0.0438 4.78 3486 391 114 100.0 99.2 8.9 100.0 100.0 5.2 4 0.0613 4.04 4007 439 107 100.0 99.5 9.1 100.0 100.0 5.2 5 0.0788 3.56 4614 503 110 100.0 99.6 9.2 100.0 100.0 5.1 6 0.0963 3.22 4895 534 110 100.0 99.7 9.2 100.0 100.0 5.1 7 0.1138 2.96 5497 594 113 100.0 99.8 9.3 100.0 100.0 5.1 8 0.1313 2.76 5754 621 109 100.0 99.8 9.3 100.0 100.0 5.0 9 0.1488 2.59 6104 663 116 100.0 99.8 9.2 100.0 100.0 5.0 10 0.1663 2.45 6483 699 108 100.0 99.9 9.3 100.0 100.0 5.0 11 0.1838 2.33 6732 734 117 100.0 99.9 9.2 100.0 100.0 5.0 12 0.2013 2.23 7000 754 104 100.0 99.9 9.3 100.0 100.0 5.0 13 0.2188 2.14 7265 793 111 100.0 99.9 9.2 100.0 100.0 4.9 14 0.2363 2.06 7400 812 111 100.0 99.9 9.1 100.0 100.0 4.9 15 0.2538 1.99 7800 860 114 100.0 99.9 9.1 100.0 100.0 4.8 16 0.2713 1.92 7790 854 106 100.0 99.9 9.1 100.0 100.0 4.8 17 0.2888 1.86 8097 899 108 100.0 99.9 9.0 100.0 100.0 4.8 18 0.3063 1.81 8370 928 113 100.0 99.9 9.0 100.0 100.0 4.8 19 0.3238 1.76 8637 970 119 100.0 99.9 8.9 100.0 100.0 4.7 20 0.3413 1.71 8605 964 103 100.0 100.0 8.9 100.0 100.0 4.7 21 0.3588 1.67 8858 998 113 100.0 100.0 8.9 100.0 100.0 4.6 22 0.3763 1.63 8857 1007 108 100.0 100.0 8.8 100.0 100.0 4.6 23 0.3938 1.59 9220 1050 112 100.0 100.0 8.8 100.0 100.0 4.6 24 0.4113 1.56 9180 1056 106 100.0 100.0 8.7 100.0 100.0 4.5 25 0.4288 1.53 9551 1102 121 100.0 100.0 8.7 100.0 100.0 4.5 26 0.4463 1.50 9278 1085 103 100.0 100.0 8.6 100.0 100.0 4.4 27 0.4638 1.47 9634 1130 117 100.0 100.0 8.5 100.0 100.0 4.4 28 0.4813 1.44 8681 1138 96 99.4 99.9 7.6 97.8 98.2 3.7 29 0.4988 1.42 5798 1076 101 93.2 99.6 5.4 82.3 87.8 2.3 30 0.5163 1.39 4138 984 68 83.8 98.8 4.2 57.9 68.4 1.5 $$ Overall: 205741 24129 3242 98.8 98.8 8.5 96.9 98.0 4.5 Nmeas Nref Ncent %poss C%poss Mlplct AnoCmp AnoFrc AnoMlt Analysis of standard deviations =============================== This analyses the distribution of the normalised deviations Delta = (Ihl - Mn(Iothers) )/sqrt[sd(Ihl)**2 + sd(Mn(I))**2] If the SD is a true estimate of the error, this distribution should have Mean=0.0 and Sigma=1.0 for all ranges of intensity The analysis is repeated for ranges of increasing Imean The Mean is expected to increase with Imean since the latter is a weighted mean and sd(Ihl) & Ihl are correlated If the Sigma increases with Imean, increase the value of SdAdd SD corrections:- SdFac * Sqrt[sd](I**2 + SdB I + (SdAdd I)**2) Fulls Partials Run SdFac SdB SdAdd SdFac SdB SdAdd 1 Fulls & partials 1.35 36.47 0.0153 3.28 11.14 0.0062 $TABLE: Run 1, standard deviation v. Intensity, New: $GRAPHS: Sigma(scatter/SD), within 5 sd:N:2,11,14: : Sigma(scatter/SD), within 5 sd, all and within 5 sd:N:2,5,8,11,14: Fulls, all Partials, all Fulls, < 5 sd Partials, < 5 sd $$ Range NF MnF SdF NP MnP SdP NFc MnFc SdFc NPc MnPc SdPc $$ $$ 1 2105 5594 0.01 0.61 78635 0.02 0.63 5594 0.01 0.61 78581 0.02 0.61 2 8575 2916 -0.14 0.83 32146 0.03 0.79 2916 -0.14 0.83 32143 0.03 0.78 3 15492 1723 -0.31 0.92 17348 0.05 0.91 1723 -0.31 0.92 17341 0.05 0.90 4 23555 1214 -0.39 0.92 12322 0.06 0.95 1213 -0.39 0.91 12320 0.05 0.94 5 32856 1072 -0.37 0.96 9039 0.06 0.96 1072 -0.37 0.96 9036 0.06 0.95 6 43895 832 -0.41 0.92 7031 0.07 0.97 832 -0.41 0.92 7031 0.07 0.97 7 57827 810 -0.42 1.00 6204 0.07 0.98 810 -0.42 1.00 6204 0.07 0.98 8 76234 854 -0.39 1.06 6314 0.07 1.04 854 -0.39 1.06 6312 0.07 1.03 9 105815 768 -0.30 1.02 5612 0.05 1.02 768 -0.30 1.02 5611 0.05 1.02 10 280254 1841 -0.34 0.92 12161 0.06 0.90 1841 -0.34 0.92 12160 0.06 0.90 $$ Overall: 17624 -0.21 0.86 186812 0.04 0.80 17623 -0.21 0.85 186739 0.04 0.79 ============================================================== $TEXT:Result: $$ $$ Summary data for Project: New Crystal: New Dataset: New Overall InnerShell OuterShell Low resolution limit 21.38 21.38 1.40 High resolution limit 1.38 7.56 1.38 Rmerge (within I+/I-) 0.030 0.013 0.179 Rmerge (all I+ and I-) 0.035 0.018 0.192 Rmeas (within I+/I-) 0.033 0.014 0.215 Rmeas (all I+ & I-) 0.037 0.019 0.218 Rpim (within I+/I-) 0.015 0.006 0.117 Rpim (all I+ & I-) 0.012 0.006 0.100 Rmerge in top intensity bin 0.017 - - Total number of observations 205741 1381 4138 Total number unique 24129 183 984 Mean((I)/sd(I)) 29.3 61.3 4.5 Mn(I) half-set correlation CC(1/2) 1.000 1.000 0.941 Completeness 98.8 95.7 83.8 Multiplicity 8.5 7.5 4.2 Anomalous completeness 96.9 98.9 57.9 Anomalous multiplicity 4.5 5.3 1.5 DelAnom correlation between half-sets 0.443 0.701 -0.039 Mid-Slope of Anom Normal Probability 1.028 - - Estimates of resolution limits: overall from half-dataset correlation CC(1/2) > 0.50: limit = 1.38A == maximum resolution from Mn(I/sd) > 2.00: limit = 1.38A == maximum resolution Estimates of resolution limits in reciprocal lattice directions: Along h k plane from half-dataset correlation CC(1/2) > 0.50: limit = 1.38A == maximum resolution from Mn(I/sd) > 2.00: limit = 1.38A == maximum resolution Along l axis from half-dataset correlation CC(1/2) > 0.50: limit = 1.38A == maximum resolution from Mn(I/sd) > 2.00: limit = 1.38A == maximum resolution Average unit cell: 78.74 78.74 36.84 90 90 90 Space group: P 41 21 2 Average mosaicity: 0.33 Minimum and maximum SD correction factors: Fulls 0.88 70.22 Partials 1.04 145.25 Anomalous flag switched ON in input, strong anomalous signal found $$ ============================================================== ==== Writing merged data for dataset New/New/New to file scala_b51001.mtz Number of reflections written 24129 maximum resolution 1.380 End of aimless job, total time: cpu time: 25.20 secs, elapsed time: 26.0 secs



############################################################### ############################################################### ############################################################### ### CCP4 6.3: ctruncate version 1.8.8 : 24/09/12## ############################################################### User: Administrator Run date: 10/ 5/2013 Run time: 14:44:42 Please reference: Collaborative Computational Project, Number 4. 1994. "The CCP4 Suite: Programs for Protein Crystallography". Acta Cryst. D50, 760-763. as well as any specific reference in the program write-up.
USER SUPPLIED INPUT: hklin scala_b51001.mtz hklout ctruncate_b51001.mtz colin /*/*/[IMEAN,SIGIMEAN] colano /*/*/[I(+),SIGI(+),I(-),SIGI(-)] CRYSTAL INFO: Crystal/dataset names: /New/New Ncentric = 3198 Number of centric bins = 60 Cell parameters: 78.7400 78.7400 36.8399 90.0000 90.0000 90.0000 Number of reflections: 24085 Minimum resolution = 21.376 A Maximum resolution = 1.380 A Environment variable SYMINFO not set ... guessing location of symmetry file. SYMINFO file set to C:\CCP4\6.3\lib\data\syminfo.lib Spacegroup: P 41 21 2 (number 92) Pointgroup: PG422 $TABLE: Intensity Completeness: $GRAPHS: Completeness v resolution:N:1,2,3,4,5,6: $$ 1/resol^2 completeness sig1 sig2 sig3 standard$$ $$ 0.004376 0.6752 0.6752 0.6752 0.6752 0.0336 0.013128 1.0000 1.0000 1.0000 1.0000 0.0369 0.021881 1.0000 1.0000 1.0000 1.0000 0.0348 0.030633 1.0000 1.0000 1.0000 0.9912 0.0354 0.039385 1.0000 1.0000 1.0000 0.9835 0.0331 0.048137 1.0000 1.0000 0.9851 0.9701 0.0396 0.056890 1.0000 1.0000 1.0000 0.9926 0.0251 0.065642 1.0000 1.0000 1.0000 1.0000 0.0260 0.074394 1.0000 1.0000 0.9934 0.9934 0.0332 0.083146 1.0000 1.0000 1.0000 0.9935 0.0286 0.091899 1.0000 1.0000 0.9940 0.9940 0.0333 0.100651 1.0000 1.0000 0.9937 0.9937 0.0305 0.109403 1.0000 1.0000 1.0000 0.9890 0.0367 0.118155 1.0000 1.0000 0.9971 0.9914 0.0343 0.126908 1.0000 1.0000 1.0000 0.9894 0.0388 0.135660 1.0000 1.0000 0.9832 0.9777 0.0466 0.144412 1.0000 1.0000 0.9899 0.9899 0.0490 0.153164 1.0000 0.9947 0.9947 0.9868 0.0462 0.161917 1.0000 1.0000 0.9949 0.9949 0.0421 0.170669 1.0000 1.0000 1.0000 0.9952 0.0416 0.179421 1.0000 0.9904 0.9856 0.9785 0.0825 0.188173 1.0000 0.9955 0.9955 0.9955 0.0483 0.196925 1.0000 1.0000 0.9878 0.9830 0.0495 0.205678 1.0000 1.0000 0.9911 0.9778 0.0505 0.214430 1.0000 0.9913 0.9913 0.9783 0.0622 0.223182 1.0000 1.0000 0.9909 0.9863 0.0487 0.231934 1.0000 0.9978 0.9871 0.9741 0.0587 0.240687 1.0000 0.9957 0.9892 0.9654 0.0731 0.249439 1.0000 0.9918 0.9898 0.9836 0.0607 0.258191 1.0000 0.9959 0.9836 0.9775 0.1481 0.266943 1.0000 0.9958 0.9750 0.9667 0.0649 0.275696 1.0000 0.9917 0.9711 0.9587 0.0965 0.284448 1.0000 0.9960 0.9783 0.9545 0.0802 0.293200 1.0000 0.9843 0.9705 0.9626 0.0923 0.301952 1.0000 0.9887 0.9699 0.9568 0.0934 0.310705 1.0000 0.9843 0.9667 0.9335 0.1116 0.319457 1.0000 0.9904 0.9827 0.9693 0.0904 0.328209 1.0000 0.9590 0.9394 0.9287 0.1149 0.336961 1.0000 0.9981 0.9710 0.9556 0.0956 0.345714 1.0000 0.9677 0.9479 0.9318 0.1947 0.354466 1.0000 0.9702 0.9572 0.9311 0.1951 0.363218 1.0000 0.9771 0.9454 0.8944 0.1839 0.371970 1.0000 0.9756 0.9477 0.9233 0.2146 0.380723 1.0000 0.9909 0.9653 0.9378 0.1271 0.389475 1.0000 0.9776 0.9414 0.9207 0.2240 0.398227 1.0000 0.9844 0.9549 0.9132 0.1405 0.406979 1.0000 0.9770 0.9490 0.9013 0.1461 0.415732 1.0000 0.9717 0.9451 0.8779 0.2047 0.424484 1.0000 0.9527 0.9240 0.8818 0.2055 0.433236 1.0000 0.9606 0.9370 0.9024 0.1812 0.441988 1.0000 0.9663 0.9175 0.8788 0.2239 0.450741 1.0000 0.9646 0.9158 0.8754 0.1854 0.459493 1.0000 0.9663 0.9197 0.8523 0.4851 0.468245 1.0000 0.9604 0.9177 0.8449 0.2490 0.476997 1.0000 0.9465 0.8852 0.8066 0.3845 0.485750 0.9752 0.8960 0.8300 0.7673 0.5108 0.494502 0.9370 0.8252 0.7087 0.6252 0.5176 0.503254 0.8933 0.7576 0.6555 0.5488 0.6471 0.512006 0.8396 0.7009 0.5997 0.4969 0.8546 0.520758 0.7934 0.6526 0.5415 0.4351 0.6575 $$ COMPLETENESS ANALYSIS (using intensities): Using I/sigI > 3 with completeness above 0.85, the estimated useful Resolution Range of this data is 10.689A to 1.468A The high resolution cut-off will be used in gathering the statistics for the dataset, however the full dataset will be output TRANSLATIONAL NCS: No translational NCS detected (with resolution limited to 4.00 A) ANISOTROPY ANALYSIS (using intensities): Eigenvalues: 0.2567 0.2567 0.2145 Eigenvalue ratios: 1.0000 1.0000 0.8354 Resolution limit in weakest direction = 1.606 A Anisotropic U (orthogonal coords): | 0.2567 0.0000 0.0000 | | 0.0000 0.2567 0.0000 | | 0.0000 0.0000 0.2145 | Anisotropic U scaling (fractional coords): | 4.140e-005 1.284e-022 -7.569e-022 | | 1.284e-022 4.140e-005 -4.535e-023 | | -7.569e-022 -4.535e-023 1.580e-004 | Anisotropic B scaling (fractional coords): | 3.269e-003 1.014e-020 -5.976e-020 | | 1.014e-020 3.269e-003 -3.581e-021 | | -5.976e-020 -3.581e-021 1.248e-002 | $TABLE: Intensity statistics: $GRAPHS: Mn(I) v resolution:N:1,2,3,4,5: : Mn(I/sd) v resolution:N:1,6,7,8,9: : No. reflections v resolution:N:1,10,11,12,13: $$ 1/resol^2 Mn(I(d1)) Mn(I(d2)) Mn(I(d3)) Mn(I(ov) Mn(I/sd(d1)) Mn(I/sd(d2)) Mn(I/sd(d3)) Mn(I/sd(ov)) N(d1) N(d2) N(d3) N(ov)$$ $$ 0.004376 9.9983e+004 9.9983e+004 1.5075e+005 1.7924e+005 4.0422e+001 4.0422e+001 8.5600e+001 7.2055e+001 136 136 192 992 0.013128 1.6229e+005 1.6229e+005 4.8989e+004 1.5863e+005 5.2855e+001 5.2855e+001 6.0833e+001 6.9780e+001 288 288 208 1872 0.021881 9.2195e+004 9.2195e+004 9.9661e+004 9.8222e+004 5.0763e+001 5.0763e+001 8.2782e+001 6.3645e+001 296 296 320 2176 0.030633 9.9590e+004 9.9590e+004 5.8460e+004 9.0411e+004 5.0460e+001 5.0460e+001 6.4405e+001 6.2274e+001 376 376 432 2688 0.039385 1.1271e+005 1.1271e+005 1.5422e+005 1.4497e+005 5.1150e+001 5.1150e+001 9.8510e+001 7.2894e+001 408 408 384 2976 0.048137 1.5329e+005 1.5329e+005 1.7303e+005 1.6345e+005 5.7451e+001 5.7451e+001 8.8807e+001 7.4906e+001 432 432 512 3216 0.056890 2.5979e+005 2.5979e+005 1.8839e+005 2.3697e+005 6.8105e+001 6.8105e+001 1.0113e+002 8.4330e+001 520 520 496 3440 0.065642 1.7374e+005 1.7374e+005 1.7911e+005 2.0942e+005 6.0473e+001 6.0473e+001 9.5453e+001 8.1139e+001 472 472 448 3568 0.074394 1.6797e+005 1.6797e+005 1.7568e+005 2.0406e+005 5.8578e+001 5.8578e+001 1.0087e+002 8.1884e+001 544 544 640 3904 0.083146 1.4028e+005 1.4028e+005 1.9587e+005 1.5658e+005 5.7388e+001 5.7388e+001 1.0537e+002 7.6197e+001 576 576 448 4096 0.091899 1.9493e+005 1.9493e+005 2.1136e+005 1.6023e+005 6.4176e+001 6.4176e+001 1.0369e+002 7.4836e+001 584 584 704 4272 0.100651 1.2490e+005 1.2490e+005 1.4484e+005 1.2886e+005 5.6432e+001 5.6432e+001 9.5901e+001 7.1235e+001 616 616 480 4288 0.109403 9.8152e+004 9.8152e+004 1.0615e+005 9.1385e+004 4.9120e+001 4.9120e+001 8.1310e+001 6.1297e+001 648 648 768 4720 0.118155 7.7016e+004 7.7016e+004 9.4931e+004 8.5141e+004 4.6468e+001 4.6468e+001 7.9697e+001 6.0270e+001 656 656 624 4704 0.126908 7.2248e+004 7.2248e+004 7.1976e+004 6.7449e+004 4.5751e+001 4.5751e+001 7.2559e+001 5.5230e+001 672 672 704 5024 0.135660 4.7324e+004 4.7324e+004 6.1609e+004 6.0076e+004 3.7825e+001 3.7825e+001 6.4287e+001 5.2063e+001 696 696 736 4960 0.144412 5.3385e+004 5.3385e+004 5.4365e+004 5.7727e+004 3.8988e+001 3.8988e+001 6.6686e+001 5.2509e+001 704 704 688 5328 0.153164 5.1506e+004 5.1506e+004 5.3693e+004 5.1651e+004 4.1050e+001 4.1050e+001 6.4049e+001 4.9503e+001 736 736 736 5184 0.161917 4.8756e+004 4.8756e+004 3.9469e+004 4.9593e+004 3.9607e+001 3.9607e+001 5.6481e+001 4.8804e+001 792 792 752 5456 0.170669 4.5954e+004 4.5954e+004 4.4071e+004 4.8295e+004 3.6848e+001 3.6848e+001 5.7798e+001 4.8590e+001 760 760 784 5712 0.179421 4.6792e+004 4.6792e+004 5.5487e+004 4.4800e+004 3.7518e+001 3.7518e+001 6.8167e+001 4.7522e+001 792 792 768 5808 0.188173 4.6171e+004 4.6171e+004 5.2386e+004 4.9195e+004 3.6933e+001 3.6933e+001 6.5547e+001 4.8599e+001 832 832 960 5952 0.196925 4.2834e+004 4.2834e+004 4.2601e+004 4.0873e+004 3.6875e+001 3.6875e+001 5.8245e+001 4.4808e+001 768 768 752 5840 0.205678 3.4555e+004 3.4555e+004 5.6682e+004 3.8484e+004 3.3547e+001 3.3547e+001 6.6902e+001 4.3928e+001 856 856 800 6240 0.214430 3.7351e+004 3.7351e+004 4.0155e+004 3.6305e+004 3.5801e+001 3.5801e+001 5.5937e+001 4.3139e+001 920 920 1040 6400 0.223182 3.3730e+004 3.3730e+004 4.9052e+004 3.5882e+004 3.2677e+001 3.2677e+001 6.2032e+001 4.2803e+001 816 816 848 6192 0.231934 3.3268e+004 3.3268e+004 4.5751e+004 3.1861e+004 3.2812e+001 3.2812e+001 5.7963e+001 3.9742e+001 952 952 720 6464 0.240687 2.6649e+004 2.6649e+004 3.6716e+004 2.9486e+004 2.8448e+001 2.8448e+001 5.1418e+001 3.8114e+001 800 800 1056 6528 0.249439 2.7427e+004 2.7427e+004 3.1488e+004 2.5444e+004 3.0178e+001 3.0178e+001 5.2815e+001 3.6437e+001 976 976 1008 6864 0.258191 2.0732e+004 2.0732e+004 2.6678e+004 2.1655e+004 2.6616e+001 2.6616e+001 4.6576e+001 3.3065e+001 992 992 768 6880 0.266943 2.1011e+004 2.1011e+004 2.0322e+004 2.1775e+004 2.5988e+001 2.5988e+001 3.8472e+001 3.2800e+001 888 888 992 6784 0.275696 1.8469e+004 1.8469e+004 2.4101e+004 1.9830e+004 2.3901e+001 2.3901e+001 4.5213e+001 3.1865e+001 968 968 1120 6896 0.284448 1.5579e+004 1.5579e+004 1.9370e+004 1.6900e+004 2.2852e+001 2.2852e+001 3.9767e+001 2.9125e+001 1016 1016 832 7296 0.293200 1.3399e+004 1.3399e+004 1.2776e+004 1.4281e+004 2.0883e+001 2.0883e+001 3.1733e+001 2.6947e+001 944 944 896 7056 0.301952 1.1959e+004 1.1959e+004 1.6960e+004 1.3475e+004 2.0203e+001 2.0203e+001 3.7002e+001 2.6067e+001 1024 1024 1152 7584 0.310705 1.0281e+004 1.0281e+004 1.5708e+004 1.1443e+004 1.8644e+001 1.8644e+001 3.4754e+001 2.4225e+001 960 960 1088 7248 0.319457 1.2593e+004 1.2593e+004 1.5118e+004 1.1541e+004 2.0608e+001 2.0608e+001 3.5276e+001 2.4174e+001 1088 1088 896 7552 0.328209 7.7224e+003 7.7224e+003 8.9666e+003 9.5339e+003 1.6120e+001 1.6120e+001 2.5352e+001 2.2050e+001 1064 1064 1152 7888 0.336961 7.6506e+003 7.6506e+003 1.1399e+004 9.6934e+003 1.6145e+001 1.6145e+001 2.9429e+001 2.2211e+001 1008 1008 1104 7520 0.345714 6.6539e+003 6.6539e+003 8.9036e+003 8.4040e+003 1.5170e+001 1.5170e+001 2.7035e+001 2.0542e+001 1144 1144 1088 8000 0.354466 6.4228e+003 6.4228e+003 9.1323e+003 7.9471e+003 1.4827e+001 1.4827e+001 2.6600e+001 2.0000e+001 1000 1000 1056 7712 0.363218 7.0873e+003 7.0873e+003 6.2283e+003 7.3605e+003 1.5386e+001 1.5386e+001 2.2745e+001 1.9004e+001 1104 1104 1152 8160 0.371970 6.2398e+003 6.2398e+003 7.9016e+003 7.3802e+003 1.4284e+001 1.4284e+001 2.5094e+001 1.9013e+001 1208 1208 1072 8224 0.380723 6.6966e+003 6.6966e+003 8.1298e+003 7.0616e+003 1.4451e+001 1.4451e+001 2.4428e+001 1.8488e+001 1024 1024 1104 7920 0.389475 4.8925e+003 4.8925e+003 7.0969e+003 6.7047e+003 1.2755e+001 1.2755e+001 2.2930e+001 1.7728e+001 1168 1168 1248 8384 0.398227 5.6225e+003 5.6225e+003 7.1646e+003 5.9430e+003 1.3602e+001 1.3602e+001 2.3962e+001 1.6656e+001 1080 1080 1024 8320 0.406979 5.4744e+003 5.4744e+003 6.3516e+003 5.6435e+003 1.2689e+001 1.2689e+001 2.1921e+001 1.6011e+001 1216 1216 1184 8736 0.415732 4.9652e+003 4.9652e+003 6.5739e+003 5.3985e+003 1.1905e+001 1.1905e+001 2.2015e+001 1.5367e+001 1144 1144 1072 8272 0.424484 4.0888e+003 4.0888e+003 6.3896e+003 4.6325e+003 1.0897e+001 1.0897e+001 2.1199e+001 1.4331e+001 1112 1112 1328 8464 0.433236 4.0926e+003 4.0926e+003 5.0276e+003 4.5295e+003 1.1139e+001 1.1139e+001 1.7856e+001 1.4081e+001 1264 1264 1280 9104 0.441988 3.6429e+003 3.6429e+003 5.6059e+003 4.0709e+003 1.0170e+001 1.0170e+001 2.0337e+001 1.3012e+001 1168 1168 1072 8688 0.450741 4.3718e+003 4.3718e+003 4.4192e+003 3.8723e+003 1.1464e+001 1.1464e+001 1.7251e+001 1.2495e+001 1248 1248 1088 8672 0.459493 2.9142e+003 2.9142e+003 3.8634e+003 3.5329e+003 8.5296e+000 8.5296e+000 1.5720e+001 1.1672e+001 1240 1240 1280 9040 0.468245 2.6421e+003 2.6421e+003 2.8047e+003 2.8500e+003 8.4451e+000 8.4451e+000 1.3222e+001 1.0526e+001 1216 1216 1440 9088 0.476997 2.5365e+003 2.5365e+003 4.0087e+003 2.8471e+003 8.2518e+000 8.2518e+000 1.6431e+001 1.0443e+001 1256 1256 1216 9312 0.485750 1.9049e+003 1.9049e+003 3.0388e+003 2.3829e+003 5.9625e+000 5.9625e+000 1.0889e+001 8.4040e+000 1136 1136 1072 8800 0.494502 1.4495e+003 1.4495e+003 2.3365e+003 1.9412e+003 4.4750e+000 4.4750e+000 8.3251e+000 6.5783e+000 1008 1008 1168 8656 0.503254 1.0232e+003 1.0232e+003 1.7989e+003 1.6409e+003 3.5085e+000 3.5085e+000 6.4057e+000 5.3971e+000 760 760 1520 8624 0.512006 6.0300e+002 6.0300e+002 2.0773e+003 1.4484e+003 2.4117e+000 2.4117e+000 6.6898e+000 4.7565e+000 832 832 1376 8064 0.520758 7.8175e+002 7.8175e+002 2.2583e+003 1.4464e+003 2.1581e+000 2.1581e+000 6.6031e+000 4.2969e+000 456 456 1136 7552 $$ $TABLE: Acentric moments of E: $GRAPHS: 4th moment of E (Expected value = 2, Perfect Twin = 1.5):0|0.388x0|5:1,4: : 1st & 3rd moments of E (Expected values = 0.886, 1.329, Perfect twin = 0.94, 1.175):0|0.388x0|2:1,2,3: $$ 1/resol^2 $$ $$ 0.003229 0.869113 1.311369 1.836465 3.969464 9.144092 0.009688 0.877750 1.351900 2.070559 6.348246 24.458935 0.016147 0.864050 1.396803 2.242618 7.695035 32.966117 0.022606 0.891202 1.288269 1.822833 4.433434 12.931801 0.029064 0.894172 1.282288 1.799766 4.230485 11.576776 0.035523 0.883955 1.345083 2.046685 6.062857 22.006298 0.041982 0.866972 1.353004 2.051785 6.176830 24.454232 0.048441 0.872555 1.407695 2.312045 8.565753 41.556861 0.054899 0.879698 1.350166 2.063254 6.210754 23.383290 0.061358 0.870477 1.353760 2.037849 5.688234 19.153388 0.067817 0.898898 1.275955 1.811972 4.704882 15.590894 0.074275 0.874897 1.365865 2.106956 6.326240 22.931071 0.080734 0.890545 1.303189 1.882124 4.829478 14.844257 0.087193 0.888428 1.321254 1.963369 5.576807 20.025943 0.093652 0.871874 1.366497 2.091699 6.001974 20.137404 0.100110 0.895532 1.311709 1.951518 5.791424 23.047936 0.106569 0.866183 1.378630 2.140115 6.417724 22.787783 0.113028 0.868503 1.365649 2.084922 6.005184 20.557611 0.119487 0.867944 1.386631 2.182260 6.853837 26.004717 0.125945 0.876181 1.360354 2.088074 6.239966 23.011067 0.132404 0.862311 1.439914 2.468657 11.069085 73.669276 0.138863 0.881028 1.358106 2.113639 6.900510 29.641700 0.145322 0.881345 1.320308 1.921750 4.852411 14.018468 0.151780 0.890776 1.341209 2.068802 6.598882 26.737088 0.158239 0.886419 1.304338 1.872341 4.655921 13.640346 0.164698 0.881615 1.335634 1.987687 5.414257 17.692474 0.171157 0.890659 1.335106 2.037488 6.306280 24.877520 0.177615 0.889129 1.329757 2.003854 5.940733 22.379071 0.184074 0.882155 1.368896 2.184970 8.037662 41.981203 0.190533 0.888187 1.312397 1.911889 4.962167 15.144606 0.196992 0.888021 1.323889 1.974323 5.675075 20.859378 0.203450 0.882956 1.368994 2.198377 8.336917 44.801893 0.209909 0.892937 1.321798 1.977709 5.746774 20.883298 0.216368 0.896969 1.306732 1.924266 5.352082 18.473859 0.222826 0.893449 1.289764 1.830513 4.459797 12.845606 0.229285 0.882018 1.338461 2.020170 5.898476 21.291413 0.235744 0.873627 1.397965 2.265598 7.978680 35.283093 0.242203 0.890603 1.346315 2.144022 8.942131 63.479314 0.248661 0.885485 1.353089 2.102881 6.866760 29.654062 0.255120 0.889887 1.332103 2.014447 5.976575 22.031935 0.261579 0.872151 1.384753 2.191993 7.160773 29.095756 0.268038 0.871278 1.400025 2.270254 7.981035 35.075102 0.274496 0.885521 1.335757 2.031817 6.406767 27.931556 0.280955 0.882120 1.357597 2.089962 6.249495 22.143718 0.287414 0.883459 1.345657 2.088212 7.465816 42.278359 0.293873 0.886038 1.317713 1.936238 5.250056 17.498432 0.300331 0.880857 1.384672 2.233239 7.868137 34.861878 0.306790 0.879677 1.390837 2.293214 9.373944 55.906534 0.313249 0.900295 1.290319 1.869220 5.104814 17.938407 0.319708 0.887750 1.339403 2.053448 6.545882 27.734058 0.326166 0.887094 1.333993 2.006167 5.720659 19.610737 0.332625 0.884284 1.358696 2.134763 7.273007 32.674552 0.339084 0.881609 1.374194 2.213099 8.549995 49.132224 0.345543 0.889867 1.327490 1.994368 5.840673 21.579651 0.352001 0.884981 1.332841 1.998295 5.734482 20.483567 0.358460 0.889552 1.313126 1.928094 5.251811 17.745880 0.364919 0.873743 1.368867 2.117751 6.493496 24.992958 0.371377 0.883303 1.333467 1.996795 5.686303 20.007988 0.377836 0.883601 1.324337 1.962546 5.531504 19.926394 0.384295 0.902148 1.284824 1.846599 4.804515 15.063815 $$ $TABLE: Centric moments of E: $GRAPHS: 4th moment of E (Expected = 3, Perfect Twin = 2):0|0.388x0|5:1,4: : 1st & 3rd moments of E (Expected = 0.798, 1.596, Perfect Twin = 0.886, 1.329):0|0.388x0|4:1,2,3: $$ 1/resol^2 $$ $$ 0.015929 0.827099 1.317587 1.790388 3.517259 7.362691 0.033133 0.797269 1.563687 2.762074 10.449272 44.450379 0.046576 0.802265 1.612825 3.057292 14.400305 81.353524 0.058288 0.850060 1.412819 2.277323 7.590932 29.939716 0.068919 0.818204 1.572395 2.882621 12.059567 56.785286 0.078784 0.809831 1.488225 2.480012 8.592897 36.322750 0.088066 0.762608 1.761606 3.695512 20.938056 137.102456 0.096881 0.809646 1.559108 2.842137 12.616913 68.551675 0.105312 0.841657 1.406640 2.194917 6.462961 21.946660 0.113418 0.723957 1.894446 4.252121 28.331754 229.128741 0.121243 0.826579 1.394798 2.070175 4.988199 12.823590 0.128824 0.749829 1.646740 2.986892 11.349218 47.697460 0.136188 0.779917 1.760394 3.755886 22.707011 161.458173 0.143358 0.801027 1.596006 2.927944 12.146911 57.927177 0.150352 0.782712 1.644704 3.160084 15.087467 84.779166 0.157188 0.799342 1.662775 3.351964 18.927882 131.865709 0.163878 0.750897 1.796368 3.784126 21.458175 142.413244 0.170434 0.805622 1.516152 2.536715 8.258489 29.966588 0.176867 0.837994 1.435944 2.333178 7.827917 31.629969 0.183184 0.805856 1.575630 2.863988 12.016140 59.089996 0.189395 0.769306 1.802968 3.988471 27.091894 223.824655 0.195505 0.742688 1.735150 3.438839 16.759597 94.188253 0.201521 0.813323 1.547553 2.867542 14.655277 98.950728 0.207449 0.765762 1.758120 3.585816 17.895255 97.757120 0.213293 0.804110 1.461377 2.291240 6.236513 18.289992 0.219058 0.805385 1.615819 3.087519 15.206433 93.226639 0.224748 0.767302 1.748010 3.642415 20.997585 143.645338 0.230367 0.816288 1.504780 2.605755 10.253544 49.183802 0.235918 0.810440 1.503399 2.505875 8.273871 31.100738 0.241405 0.776193 1.694837 3.410381 19.062398 134.755645 0.246830 0.776715 1.754088 3.741271 23.510248 181.590152 0.252196 0.752671 2.053488 5.347894 46.206641 433.728457 0.257506 0.821283 1.439616 2.283081 6.891082 24.221722 0.262761 0.826769 1.502244 2.561124 9.164437 37.799695 0.267965 0.819801 1.533504 2.703950 10.686646 49.865052 0.273118 0.813252 1.508437 2.529184 8.437316 32.100573 0.278223 0.813783 1.519291 2.603322 9.339143 38.632292 0.283282 0.809476 1.558699 2.749599 10.461986 46.991581 0.288296 0.809709 1.610521 3.068822 14.796154 86.999784 0.293267 0.845711 1.423354 2.297889 7.654029 30.708990 0.298196 0.839710 1.454265 2.383263 7.698122 27.769354 0.303084 0.803655 1.563135 2.766871 10.349345 43.055853 0.307934 0.830004 1.451806 2.406071 8.920183 42.863853 0.312746 0.753895 1.861621 4.215772 29.555661 253.487163 0.317520 0.866137 1.353222 2.024633 5.481781 17.384298 0.322260 0.838659 1.393245 2.119359 5.680169 16.928321 0.326964 0.778670 1.793320 3.898294 23.915584 169.149493 0.331635 0.770486 1.618981 2.957933 12.351996 62.268065 0.336274 0.774312 1.968212 4.994020 42.845829 411.727552 0.340880 0.788687 1.651256 3.208514 15.919909 94.975709 0.345456 0.808994 1.442277 2.246598 6.164351 18.672474 0.350001 0.869965 1.392250 2.252663 8.196123 38.802114 0.354518 0.798165 1.602117 2.988200 13.615460 75.491919 0.359005 0.801061 1.462621 2.295820 6.338680 19.318493 0.363465 0.803314 1.545990 2.756530 11.492482 59.125255 0.367897 0.756177 1.710972 3.318419 15.104634 78.699327 0.372304 0.849916 1.477031 2.529903 9.542356 42.907003 0.376684 0.764921 1.705230 3.339033 15.768637 85.528623 0.381038 0.854974 1.436486 2.409689 9.312691 45.915850 0.385368 0.890056 1.292515 1.834901 4.453223 12.558412 $$ TWINNING ANALYSIS: Data has been truncated at 1.61 A resolution Anisotropy correction has been applied before calculating twinning tests First principles calculation of potential twinning operators using code by Andrey Lebedev: First principles calculation has found 0 potential twinning operators Applying the L test for twinning: (Padilla and Yeates Acta Cryst. D59 1124 (2003)) L statistic = 0.507 (untwinned 0.5 perfect twin 0.375) $TABLE: L test for twinning: $GRAPHS: cumulative distribution function for |L|:0|1x0|1:1,2,3,4: $$ |L| Observed Expected_untwinned Expected_twinned $$ $$ 0.000000 0.000000 0.000000 0.000000 0.050000 0.054502 0.050000 0.074938 0.100000 0.102312 0.100000 0.149500 0.150000 0.149404 0.150000 0.223313 0.200000 0.196256 0.200000 0.296000 0.250000 0.245022 0.250000 0.367188 0.300000 0.293214 0.300000 0.436500 0.350000 0.340868 0.350000 0.503563 0.400000 0.388216 0.400000 0.568000 0.450000 0.437939 0.450000 0.629437 0.500000 0.485774 0.500000 0.687500 0.550000 0.534868 0.550000 0.741812 0.600000 0.584538 0.600000 0.792000 0.650000 0.635453 0.650000 0.837688 0.700000 0.686803 0.700000 0.878500 0.750000 0.739465 0.750000 0.914063 0.800000 0.791489 0.800000 0.944000 0.850000 0.844101 0.850000 0.967938 0.900000 0.897725 0.900000 0.985500 0.950000 0.952874 0.950000 0.996313 1.000000 1.000000 1.000000 1.000000 $$ TWINNING SUMMARY Twinning fraction from H-test: 0.00 L-statistic from L-Test: 0.51 Relation between L statistics and twinning fraction: Twinning fraction = 0.000 L statistics = 0.500: Twinning fraction = 0.100 L statistics = 0.440: Twinning fraction = 0.500 L statistics = 0.375: Analysis of mean intensity by parity for reflection classes For each class, Mn(I/sig(I)) is given for even and odd parity with respect to the condition, eg group 1: h even & odd; group 7 h+k+l even & odd; group 8 h+k=2n & h+l=2n & k+l=2n or not Range Min_S Dmax Nref 1 2 3 4 5 6 7 8 h k l h+k h+l k+l h+k+l h+k,h+l,k+l 1 0.00323 17.60 12 70.9 74.5 87.9 57.4 68.7 75.5 63.4 91.2 56.5 95.3 73.3 71.8 73.5 72.1 54.4 85.7 2 0.00969 10.16 85 61.5 64.1 55.6 71.2 55.1 74.3 58.2 68.2 61.2 64.5 57.2 68.7 61.9 63.7 52.2 67.2 3 0.01615 7.87 99 59.6 54.3 55.8 58.1 50.3 63.7 56.0 57.9 60.4 53.3 56.7 57.2 62.6 51.4 59.3 56.1 4 0.02261 6.65 115 62.8 57.9 57.3 64.0 60.7 60.0 58.8 62.2 58.4 62.3 59.7 61.1 56.0 65.1 56.4 61.8 5 0.02906 5.87 121 60.5 59.0 57.6 62.2 56.2 64.6 57.4 62.6 56.4 63.1 58.6 61.0 59.9 59.7 53.2 62.2 6 0.03552 5.31 136 66.0 66.6 63.5 69.4 60.7 71.9 67.2 65.3 72.5 60.3 68.2 64.4 60.9 71.4 75.2 63.3 7 0.04198 4.88 143 68.1 68.2 66.9 69.4 63.2 73.2 67.4 68.9 68.4 67.9 68.3 68.0 66.3 70.2 67.8 68.3 8 0.04844 4.54 156 78.7 75.8 76.0 78.9 72.5 83.6 78.8 75.7 75.0 79.5 82.9 71.5 76.5 78.2 82.2 75.7 9 0.05490 4.27 159 81.6 80.0 77.0 84.8 82.2 79.3 80.8 80.8 80.5 81.1 83.8 77.6 79.4 82.3 83.4 79.8 10 0.06136 4.04 169 80.6 69.7 72.3 78.0 73.2 76.7 67.0 84.2 71.0 79.4 76.4 73.7 75.2 74.9 64.5 79.0 11 0.06782 3.84 168 76.1 81.0 75.7 81.7 73.3 83.8 78.3 78.8 79.7 77.5 78.1 79.0 79.7 77.5 79.0 78.4 12 0.07428 3.67 190 73.1 78.7 71.9 79.9 73.7 78.5 76.5 75.1 74.3 77.6 73.3 78.5 76.9 74.7 72.7 77.0 13 0.08073 3.52 182 73.1 73.9 69.6 77.6 71.8 75.6 70.9 76.6 81.1 66.9 77.3 70.0 72.2 74.9 81.7 70.9 14 0.08719 3.39 193 71.7 75.7 72.0 75.6 73.4 74.1 72.7 74.7 71.3 76.3 73.7 73.7 73.3 74.1 70.5 74.9 15 0.09365 3.27 202 68.2 69.5 67.6 70.2 67.0 70.7 69.1 68.6 62.0 75.8 66.4 71.5 65.8 71.9 60.1 72.0 16 0.10011 3.16 208 65.6 66.9 62.4 70.4 61.8 70.8 67.1 65.4 63.1 69.2 66.7 65.9 66.1 66.4 64.4 66.8 17 0.10657 3.06 216 56.3 62.3 52.8 66.8 56.7 62.3 58.0 60.7 54.5 64.4 57.4 61.2 61.0 57.5 51.8 62.1 18 0.11303 2.97 210 60.2 58.4 59.8 58.8 60.8 57.6 57.1 61.4 58.2 60.4 61.6 57.0 56.4 62.5 58.3 59.6 19 0.11949 2.89 223 56.8 52.6 54.1 55.3 52.2 57.5 51.9 57.7 52.6 56.7 51.5 57.7 54.1 55.2 47.0 57.3 20 0.12595 2.82 238 51.1 55.3 51.9 54.4 53.2 52.9 49.5 57.1 54.7 51.4 52.3 53.8 53.7 52.4 50.4 54.1 21 0.13240 2.75 230 49.2 50.4 53.8 45.4 47.4 52.1 50.0 49.7 48.3 51.4 47.7 52.1 51.2 48.7 46.4 51.1 22 0.13886 2.68 227 50.4 51.2 50.7 50.9 44.9 57.0 47.9 53.9 50.7 50.9 52.6 49.1 50.6 51.0 49.5 51.2 23 0.14532 2.62 245 48.9 50.9 51.3 48.4 51.7 47.5 45.6 54.1 54.9 44.7 51.1 48.5 47.9 51.7 51.9 49.1 24 0.15178 2.57 261 51.2 44.1 45.6 49.9 44.8 50.9 46.8 48.9 46.1 49.5 48.3 47.2 47.7 47.9 45.7 48.5 25 0.15824 2.51 242 49.2 47.4 49.7 46.4 47.8 48.7 48.1 48.4 47.6 48.9 50.8 45.8 47.6 48.8 49.9 47.6 26 0.16470 2.46 259 48.3 46.9 47.5 47.7 46.4 49.0 47.9 47.4 47.8 47.5 50.5 44.9 47.5 47.8 51.1 46.6 27 0.17116 2.42 278 44.0 44.6 43.0 45.6 41.9 46.4 42.7 46.0 43.3 45.3 45.8 42.9 44.7 43.9 43.2 44.7 28 0.17762 2.37 253 48.9 46.9 48.1 47.6 45.9 49.7 48.7 46.9 48.0 47.7 47.2 48.5 48.1 47.6 48.2 47.7 29 0.18407 2.33 270 46.2 46.2 45.0 47.6 44.8 47.7 43.4 49.2 48.1 44.4 46.4 46.0 47.1 45.4 45.4 46.5 30 0.19053 2.29 276 44.3 45.6 44.9 45.2 44.1 46.1 46.8 43.4 44.2 45.8 45.4 44.6 42.4 47.6 46.4 44.6 31 0.19699 2.25 289 44.9 41.3 42.4 43.9 42.2 44.2 42.4 43.8 45.6 40.5 46.4 39.7 42.1 44.2 48.0 41.3 32 0.20345 2.22 272 42.7 41.8 42.0 42.5 43.2 41.2 42.3 42.2 42.1 42.4 41.4 43.1 40.7 43.7 41.3 42.6 33 0.20991 2.18 298 40.2 43.7 39.8 44.1 41.2 42.7 43.4 40.5 42.7 41.1 42.0 41.8 41.2 42.7 44.2 41.1 34 0.21637 2.15 280 42.0 41.2 40.1 43.1 41.2 42.0 41.7 41.5 40.7 42.6 41.3 42.0 43.1 40.1 40.5 42.0 35 0.22283 2.12 303 41.9 42.1 41.9 42.2 43.8 40.3 43.6 40.5 43.1 41.0 41.7 42.3 42.6 41.4 44.6 41.3 36 0.22929 2.09 296 37.3 39.6 38.5 38.5 38.8 38.2 36.2 40.8 38.2 38.8 38.5 38.5 37.6 39.4 36.0 39.4 37 0.23574 2.06 304 34.1 38.8 35.6 37.0 34.4 38.2 36.3 36.3 36.4 36.2 38.4 34.3 36.5 36.1 38.2 35.6 38 0.24220 2.03 315 38.0 36.3 36.0 38.2 37.1 37.1 37.0 37.2 36.4 37.8 36.0 38.2 38.2 36.0 35.1 37.7 39 0.24866 2.01 309 33.9 35.7 34.3 35.2 34.3 35.3 33.6 36.1 36.6 33.0 35.8 33.6 35.2 34.3 36.3 34.2 40 0.25512 1.98 309 32.8 30.7 31.8 31.8 31.6 31.9 31.1 32.4 31.5 32.1 32.6 31.0 32.0 31.6 31.6 31.8 41 0.26158 1.96 316 34.8 31.3 32.9 33.2 32.5 33.6 31.9 34.2 33.2 32.9 33.4 32.7 32.8 33.3 32.4 33.3 42 0.26804 1.93 334 31.6 29.5 29.3 31.8 28.5 32.7 31.4 29.8 29.8 31.3 29.3 31.9 29.2 31.9 29.4 31.0 43 0.27450 1.91 322 31.3 30.9 31.0 31.3 31.7 30.7 30.6 31.8 30.2 32.0 33.0 29.4 33.3 29.2 31.5 31.0 44 0.28096 1.89 328 29.9 26.7 27.9 28.6 25.7 30.9 28.3 28.2 27.4 29.2 27.3 29.2 29.0 27.5 26.7 28.9 45 0.28741 1.87 331 26.4 26.8 25.4 27.9 24.4 28.7 25.5 27.8 25.4 27.8 26.2 27.0 25.7 27.4 23.8 27.6 46 0.29387 1.84 338 25.3 28.2 25.7 27.9 26.0 27.6 27.3 26.2 27.4 26.1 26.0 27.5 26.1 27.3 27.3 26.6 47 0.30033 1.82 339 24.9 24.1 24.7 24.4 23.8 25.3 24.5 24.5 23.6 25.5 24.4 24.7 23.5 25.7 23.4 24.9 48 0.30679 1.81 352 22.7 23.5 24.1 22.1 23.5 22.6 22.7 23.5 23.1 23.1 23.1 23.1 23.4 22.8 22.7 23.2 49 0.31325 1.79 336 23.6 24.7 24.6 23.6 23.9 24.3 22.6 25.7 23.6 24.6 22.4 25.6 25.3 22.8 20.5 25.3 50 0.31971 1.77 344 23.6 22.5 23.5 22.5 22.7 23.3 23.9 22.2 24.2 21.9 22.2 23.9 22.8 23.3 24.2 22.7 51 0.32617 1.75 363 20.7 21.7 22.1 20.3 21.2 21.2 20.8 21.7 21.9 20.5 21.1 21.3 21.5 20.9 21.3 21.2 52 0.33263 1.73 355 23.0 21.3 20.7 23.7 22.0 22.3 22.6 21.6 21.2 23.2 22.3 21.9 21.9 22.4 21.8 22.2 53 0.33908 1.72 361 20.1 19.9 19.2 20.8 18.4 21.6 19.2 20.7 19.2 20.7 19.2 20.7 20.9 19.1 17.5 20.7 54 0.34554 1.70 352 20.9 20.5 20.9 20.5 19.9 21.5 20.9 20.5 20.4 21.0 20.6 20.8 21.1 20.3 20.4 20.8 55 0.35200 1.69 367 18.4 20.0 18.7 19.7 18.6 19.9 19.9 18.4 19.8 18.7 18.7 19.7 18.7 19.7 20.0 18.9 56 0.35846 1.67 379 18.8 17.7 17.7 18.8 17.8 18.7 18.5 17.9 17.5 19.1 18.1 18.4 18.8 17.7 17.6 18.5 57 0.36492 1.66 366 17.8 19.4 18.6 18.6 18.4 18.9 18.6 18.6 18.8 18.4 18.1 19.2 19.0 18.3 18.3 18.7 58 0.37138 1.64 391 18.0 19.1 18.3 18.8 18.4 18.6 18.2 18.9 18.9 18.1 18.2 18.8 17.2 19.8 18.3 18.6 59 0.37784 1.63 359 18.3 17.7 17.9 18.1 17.9 18.1 18.5 17.4 18.4 17.6 18.6 17.4 18.4 17.6 19.6 17.5 60 0.38429 1.61 164 19.3 19.0 19.2 19.1 20.5 17.7 19.5 18.9 19.1 19.2 19.9 18.5 18.5 19.9 20.2 18.8 Totals: 15538 39.3 39.2 38.6 39.9 38.3 40.3 38.8 39.7 39.1 39.4 39.4 39.1 39.1 39.4 38.8 39.4 ICE RINGS: Possible Ice Rings Ice Ring Summary: reso mean_I mean_Sigma Estimated_I Zscore Completeness Ave_Completeness 3.90 200913.33 1987.09 210613.22 -4.88 1.00 0.99 3.67 197115.06 1928.97 198612.38 -0.78 1.00 0.99 3.44 167679.72 1734.52 179565.88 -6.85 1.00 1.00 2.67 57749.40 863.49 58013.54 -0.31 1.00 1.00 2.25 39362.20 701.83 42305.57 -4.19 1.00 1.00 2.08 34178.57 645.70 31717.90 3.81 1.00 1.00 1.95 22967.01 534.80 21528.26 2.69 1.00 1.00 1.92 19398.59 480.18 19591.55 -0.40 1.00 1.00 1.89 19617.46 484.78 17565.38 4.23 1.00 1.00 1.73 9792.49 345.93 9411.83 1.10 1.00 1.00 WILSON SCALING: Estimated number of residues = 90 Results Wilson plot: Computed using Popov & Bourenkov, Acta D (2003) D59, 1145 B = 11.157 intercept = -0.726 siga = 0.949 sigb = 0.364 scale factor on intensity = 0.4837 $TABLE: Wilson plot: $GRAPHS: Wilson plot - estimated B factor = 11.2 :A:1,2,3: $$ 1/resol^2 ln(I/I_th) Best $$ $$ 0.00438 -0.44397 0.05212 0.01313 -0.55827 -0.09975 0.02188 -1.06050 -0.57447 0.03063 -1.13106 -0.53282 0.03939 -0.59394 -0.10776 0.04814 -0.32085 0.19665 0.05689 0.08064 0.23693 0.06564 -0.06901 0.17949 0.07439 -0.03929 0.10657 0.08315 -0.18986 0.01019 0.09190 -0.12090 -0.13575 0.10065 -0.36168 -0.30105 0.10940 -0.59970 -0.43609 0.11816 -0.67703 -0.56815 0.12691 -0.85401 -0.68535 0.13566 -0.88610 -0.77171 0.14441 -0.96612 -0.82125 0.15316 -1.01272 -0.87665 0.16192 -0.94808 -0.91492 0.17067 -1.03889 -0.94152 0.17942 -1.01199 -0.95351 0.18817 -0.94304 -0.96665 0.19693 -1.02190 -0.97482 0.20568 -1.10395 -1.00685 0.21443 -1.10082 -1.05275 0.22318 -1.08127 -1.08880 0.23193 -1.15863 -1.14367 0.24069 -1.27814 -1.22274 0.24944 -1.32166 -1.30349 0.25819 -1.46239 -1.40134 0.26694 -1.46141 -1.50629 0.27570 -1.51668 -1.61358 0.28445 -1.65003 -1.70357 0.29320 -1.75953 -1.80966 0.30195 -1.83724 -1.90231 0.31070 -1.97195 -1.98619 0.31946 -1.88780 -2.05788 0.32821 -2.06821 -2.11874 0.33696 -2.10089 -2.16881 0.34571 -2.12515 -2.23342 0.35447 -2.20123 -2.30004 0.36322 -2.27869 -2.33234 0.37197 -2.21447 -2.37456 0.38072 -2.22770 -2.42190 0.38947 -2.29609 -2.47074 0.39823 -2.37150 -2.52037 0.40698 -2.39352 -2.56014 0.41573 -2.46775 -2.60323 0.42448 -2.55965 -2.66276 0.43324 -2.59245 -2.70427 0.44199 -2.60245 -2.74346 0.45074 -2.70256 -2.81345 0.45949 -2.80943 -2.86627 0.46825 -2.90189 -2.92286 0.47700 -2.97884 -2.97663 0.48575 -3.07421 -3.03517 0.49450 -3.31371 -3.08824 0.50325 -3.47245 -3.11235 0.51201 -3.53820 -3.15033 0.52076 -3.52211 -3.19437 $$ INTENSITY TO AMPLITUDE CONVERSION: 1 intensities have been rejected as unphysical $TABLE: Cumulative intensity distribution: $GRAPHS: Cumulative intensity distribution (Acentric and centric):N:1,2,3,4,5,6: $$ Z Acent_theor Acent_twin Acent_obser Cent_theor Cent_obser $$ $$ 0.00000 0.00000 0.00000 0.00255 0.00000 0.02055 0.04000 0.03921 0.00303 0.03552 0.15852 0.14514 0.08000 0.07688 0.01151 0.07713 0.22270 0.22743 0.12000 0.11308 0.02458 0.11860 0.27097 0.28179 0.16000 0.14786 0.04148 0.15659 0.31084 0.32777 0.20000 0.18127 0.06155 0.19214 0.34528 0.36061 0.24000 0.21337 0.08420 0.22803 0.37579 0.38857 0.28000 0.24422 0.10891 0.25847 0.40330 0.41771 0.32000 0.27385 0.13524 0.29075 0.42839 0.44084 0.36000 0.30232 0.16279 0.32016 0.45149 0.46431 0.40000 0.32968 0.19121 0.34891 0.47291 0.49082 0.44000 0.35596 0.22021 0.37565 0.49288 0.51117 0.48000 0.38122 0.24953 0.40063 0.51158 0.53101 0.52000 0.40548 0.27895 0.42568 0.52916 0.54654 0.56000 0.42879 0.30829 0.45052 0.54574 0.56249 0.60000 0.45119 0.33737 0.47272 0.56142 0.57689 0.64000 0.47271 0.36607 0.49334 0.57629 0.59323 0.68000 0.49338 0.39428 0.51354 0.59041 0.60628 0.72000 0.51325 0.42190 0.53289 0.60386 0.61914 0.76000 0.53233 0.44885 0.54983 0.61667 0.63214 0.80000 0.55067 0.47507 0.56830 0.62891 0.64264 0.84000 0.56829 0.50052 0.58486 0.64060 0.65580 0.88000 0.58522 0.52516 0.60079 0.65180 0.66515 0.92000 0.60148 0.54896 0.61573 0.66253 0.67277 0.96000 0.61711 0.57191 0.63048 0.67281 0.68156 1.00000 0.63212 0.59399 0.64488 0.68269 0.69528 1.04000 0.64655 0.61521 0.65861 0.69218 0.70353 1.08000 0.66040 0.63557 0.67181 0.70130 0.71230 1.12000 0.67372 0.65507 0.68482 0.71008 0.72065 1.16000 0.68651 0.67373 0.69578 0.71853 0.72942 1.20000 0.69881 0.69156 0.70813 0.72668 0.74091 1.24000 0.71062 0.70857 0.71978 0.73453 0.74915 1.28000 0.72196 0.72480 0.72985 0.74210 0.75679 1.32000 0.73286 0.74025 0.73883 0.74941 0.76475 1.36000 0.74334 0.75495 0.74929 0.75646 0.77185 1.40000 0.75340 0.76892 0.75928 0.76328 0.77675 1.44000 0.76307 0.78220 0.76789 0.76986 0.78323 1.48000 0.77236 0.79480 0.77686 0.77623 0.78881 1.52000 0.78129 0.80675 0.78569 0.78238 0.79392 1.56000 0.78986 0.81807 0.79378 0.78833 0.79997 1.60000 0.79810 0.82880 0.80155 0.79410 0.80555 1.64000 0.80602 0.83895 0.80882 0.79967 0.80752 1.68000 0.81363 0.84855 0.81546 0.80508 0.81270 1.72000 0.82093 0.85763 0.82137 0.81031 0.81627 1.76000 0.82796 0.86621 0.82825 0.81538 0.82073 1.80000 0.83470 0.87431 0.83488 0.82029 0.82533 1.84000 0.84118 0.88196 0.84028 0.82505 0.83074 1.88000 0.84741 0.88917 0.84557 0.82967 0.83619 1.92000 0.85339 0.89597 0.85138 0.83414 0.83945 1.96000 0.85914 0.90238 0.85614 0.83849 0.84208 2.00000 0.86466 0.90842 0.86174 0.84270 0.84534 $$ Estimated limits of anomalous signal Wang limit (deltaI/I) > 0.6% : 15.1166 A anomalous limit (deltaI/sig) > 1.3 : 15.1166 A measurability limit (Nanon/Nov) > 5% : 15.1166 A These calculations are performed using scaled and merged data. More accurate estimates of the limit of the anomalous signal can be obtained using scaled and unmerged data in the half dataset correlation calculation of aimless. $TABLE: Intensity anomalous analysis: $GRAPHS: Mn(dI) v resolution:N:1,2: : Mn(dI/sigdI) v resolution:N:1,3: : Mn(dI/I) v resolution:N:1,4: : Mesurability v resolution:N:1,5: $$ 1/resol^2 Mn(dI) Mn(dI/sigdI)) Mn(dI/I) measurability$$ $$ 0.004376 1.7585e+003 4.9399e-001 8.7332e-005 4.6980e-002 0.013128 2.7542e+003 1.2630e+000 1.9606e-004 4.6980e-002 0.021881 2.4199e+003 1.1876e+000 1.6299e-004 4.6980e-002 0.030633 2.1703e+003 9.7565e-001 1.1162e-004 4.6980e-002 0.039385 3.2330e+003 1.1695e+000 1.0927e-004 4.6980e-002 0.048137 4.3245e+003 1.0478e+000 9.4184e-005 4.6980e-002 0.056890 2.9845e+003 8.7687e-001 6.1293e-005 4.6980e-002 0.065642 3.4781e+003 9.8092e-001 7.4777e-005 4.6980e-002 0.074394 2.8969e+003 8.6380e-001 6.1657e-005 4.6980e-002 0.083146 2.9793e+003 8.9425e-001 6.8921e-005 4.6980e-002 0.091899 2.5309e+003 8.8369e-001 6.6640e-005 4.6980e-002 0.100651 2.2056e+003 8.5531e-001 6.8059e-005 4.6980e-002 0.109403 2.0184e+003 8.7542e-001 7.4666e-005 4.6980e-002 0.118155 1.8286e+003 9.9590e-001 8.5314e-005 4.6980e-002 0.126908 1.6824e+003 8.6222e-001 8.1218e-005 4.6980e-002 0.135660 1.5667e+003 8.8924e-001 8.1637e-005 4.6980e-002 0.144412 1.6330e+003 9.4652e-001 9.4614e-005 4.6980e-002 0.153164 1.6221e+003 9.5600e-001 9.5750e-005 4.6980e-002 0.161917 1.9597e+003 1.0788e+000 1.0650e-004 4.6980e-002 0.170669 1.6099e+003 9.7581e-001 1.0771e-004 4.6980e-002 0.179421 1.7586e+003 1.0085e+000 9.8409e-005 4.6980e-002 0.188173 1.7305e+003 9.9797e-001 1.0308e-004 4.6980e-002 0.196925 1.6503e+003 1.0209e+000 1.0875e-004 4.6980e-002 0.205678 1.1752e+003 8.2696e-001 8.2637e-005 4.6980e-002 0.214430 1.2903e+003 9.2138e-001 9.0456e-005 4.6980e-002 0.223182 1.2084e+003 8.4775e-001 8.2252e-005 4.6980e-002 0.231934 9.8907e+002 8.0300e-001 8.4517e-005 4.6980e-002 0.240687 1.1581e+003 8.6235e-001 9.6060e-005 4.6980e-002 0.249439 9.5588e+002 8.6497e-001 1.0433e-004 4.6980e-002 0.258191 9.3088e+002 8.3799e-001 9.4685e-005 4.6980e-002 0.266943 8.5696e+002 8.1148e-001 9.4753e-005 4.6980e-002 0.275696 8.7427e+002 8.4727e-001 1.0915e-004 4.6980e-002 0.284448 8.3879e+002 8.6271e-001 1.2312e-004 4.6980e-002 0.293200 7.3283e+002 8.2492e-001 1.1234e-004 4.6980e-002 0.301952 7.4471e+002 8.7393e-001 1.2803e-004 4.6980e-002 0.310705 7.6132e+002 9.1422e-001 1.4641e-004 4.6980e-002 0.319457 6.9199e+002 8.7881e-001 1.3944e-004 4.6980e-002 0.328209 7.2352e+002 9.2677e-001 1.6021e-004 4.6980e-002 0.336961 6.8245e+002 9.0534e-001 1.5299e-004 4.6980e-002 0.345714 6.9167e+002 9.1776e-001 1.7324e-004 4.6980e-002 0.354466 6.4741e+002 8.9506e-001 1.6960e-004 4.6980e-002 0.363218 6.4515e+002 8.8853e-001 1.7987e-004 4.6980e-002 0.371970 6.5196e+002 9.0808e-001 1.6817e-004 4.6980e-002 0.380723 6.6754e+002 9.1099e-001 1.9146e-004 4.6980e-002 0.389475 5.5721e+002 7.9896e-001 1.7034e-004 4.6980e-002 0.398227 5.0613e+002 7.2217e-001 1.5589e-004 4.6980e-002 0.406979 4.5758e+002 7.2259e-001 1.6189e-004 4.6980e-002 0.415732 3.7313e+002 6.3859e-001 1.4556e-004 4.6980e-002 0.424484 3.4015e+002 5.9453e-001 1.3768e-004 4.6980e-002 0.433236 3.6074e+002 6.2113e-001 1.4328e-004 4.6980e-002 0.441988 2.9711e+002 5.4794e-001 1.3006e-004 4.6980e-002 0.450741 2.9451e+002 5.5414e-001 1.5255e-004 4.6980e-002 0.459493 2.3971e+002 4.9806e-001 1.3098e-004 4.6980e-002 0.468245 2.5479e+002 5.8387e-001 1.5489e-004 4.6980e-002 0.476997 3.2885e+002 7.4385e-001 2.1161e-004 4.6980e-002 0.485750 3.9510e+002 8.6687e-001 3.6677e-004 4.6980e-002 0.494502 4.2403e+002 9.2207e-001 4.7448e-004 4.6980e-002 0.503254 4.3663e+002 1.0266e+000 5.7380e-004 4.6980e-002 0.512006 4.8873e+002 1.1526e+000 7.9634e-004 4.6980e-002 0.520758 5.1853e+002 1.2028e+000 1.9937e-003 4.6980e-002 $$ Estimated Optical Resolution: 1.20691 $TABLE: Phil plot: $GRAPHS: Phil plot - normalised values:A:1,2,3,4: : Phil plot - vs sigma:A:1,5,6,7: $$ Value Io/Sigma I/Sigma F/Sigma**0.5 Io/sigIo I/sigI F/sigF$$ $$ -5.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.92500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.85000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.77500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.70000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.62500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.55000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.47500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.40000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.32500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.25000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.17500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.10000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.02500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.95000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.87500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.80000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.72500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.65000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.57500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.42500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.35000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.27500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.20000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.12500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.05000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -2.97500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -2.90000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -2.82500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -2.75000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -2.67500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -2.60000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -2.52500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -2.45000 0.00000 0.00000 0.00000 0.50000 0.00000 0.00000 -2.37500 0.00000 0.00000 0.00000 0.50000 0.00000 0.00000 -2.30000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -2.22500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -2.15000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -2.07500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -2.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.92500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.85000 0.00000 0.00000 0.00000 0.50000 0.00000 0.00000 -1.77500 0.00000 0.00000 0.00000 0.50000 0.00000 0.00000 -1.70000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.62500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.55000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.47500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.40000 0.00000 0.00000 0.00000 0.50000 0.00000 0.00000 -1.32500 0.00000 0.00000 0.00000 0.50000 0.00000 0.00000 -1.25000 0.00000 0.00000 0.00000 0.50000 0.00000 0.00000 -1.17500 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 -1.10000 0.00000 0.00000 0.00000 0.50000 0.00000 0.00000 -1.02500 0.00000 0.00000 0.00000 0.50000 0.00000 0.00000 -0.95000 0.00000 0.00000 0.00000 0.50000 0.00000 0.00000 -0.87500 0.00000 0.00000 0.00000 0.50000 0.00000 0.00000 -0.80000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 -0.72500 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 -0.65000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 -0.57500 0.00000 0.00000 0.00000 0.50000 0.00000 0.00000 -0.50000 0.00000 0.00000 0.00000 1.50000 0.00000 0.00000 -0.42500 0.00000 0.00000 0.00000 4.00000 0.00000 0.00000 -0.35000 0.00000 0.00000 0.00000 5.00000 0.00000 0.00000 -0.27500 0.00000 0.00000 0.00000 8.50000 0.00000 0.00000 -0.20000 0.00000 0.00000 0.00000 13.50000 0.00000 0.00000 -0.12500 4.50000 0.00000 0.00000 15.50000 0.00000 0.00000 -0.05000 384.49999 0.00000 0.50000 13.50000 0.00000 0.00000 0.02500 1420.50001 0.00000 108.50000 16.00000 0.00000 0.00000 0.10000 1935.49999 0.00000 394.00001 22.50000 0.00000 0.00000 0.17500 1675.50001 0.00000 766.99998 23.50000 0.00000 0.00000 0.25000 1463.00000 0.00000 1102.50000 25.00000 0.00000 0.00000 0.32500 1326.50001 0.00000 1292.99998 28.50000 0.00000 0.00000 0.40000 1211.49999 0.00000 1393.00001 35.50000 0.00000 0.00000 0.47500 1113.00000 0.00000 1451.50000 36.00000 0.00000 0.00000 0.55000 1006.49997 0.00000 1506.50001 38.00000 0.00000 0.00000 0.62500 909.50000 0.00000 1530.00000 46.50000 0.00000 0.00000 0.70000 826.50002 0.00000 1509.00000 50.50000 0.00000 0.00000 0.77500 748.00001 0.00000 1456.50003 51.00000 0.00000 0.00000 0.85000 692.49997 0.00000 1354.49997 48.50000 0.00000 0.00000 0.92500 642.50000 0.00000 1265.49999 46.50000 0.00000 0.00000 1.00000 611.50000 0.00000 1192.00000 42.50000 0.00000 0.00000 1.07500 558.49997 0.00000 1108.99994 44.50001 0.00000 0.00000 1.15000 531.50000 0.00000 997.00004 50.50000 0.00000 0.00000 1.22500 476.99997 0.00000 868.49996 52.00000 0.00000 0.00000 1.30000 428.99999 0.00000 756.00006 53.50000 0.00000 0.00000 1.37500 417.50000 0.00000 672.00000 48.00000 0.00000 0.00000 1.45000 388.99998 0.00000 588.99994 42.50000 0.00000 0.00000 1.52500 357.50001 0.00000 496.50003 44.50000 0.00000 0.00000 1.60000 317.99999 0.00000 418.99998 48.00000 0.00000 0.00000 1.67500 282.50002 0.00000 351.00005 45.50001 0.00000 0.00000 1.75000 266.50000 0.00000 290.00000 46.50000 0.00000 0.00000 1.82500 259.49999 0.00000 256.99999 53.00000 0.00000 0.00000 1.90000 235.50001 0.00000 207.00002 46.00000 0.00000 0.50000 1.97500 228.50001 0.00000 167.50000 41.50000 0.00000 2.50000 2.05000 229.00001 0.00000 137.50004 40.50000 0.00000 6.50000 2.12500 208.00000 0.00000 109.00000 48.00000 0.00000 19.50000 2.20000 188.49999 0.00000 85.99997 53.99999 0.00000 35.50001 2.27500 174.99999 0.00000 54.49998 48.00000 0.00000 33.99998 2.35000 151.50005 0.00000 43.50001 51.49999 0.00000 32.49999 2.42500 135.99999 0.00000 35.50001 59.99999 0.00000 39.50000 2.50000 139.00000 0.00000 25.50000 59.50000 0.00000 35.50000 2.57500 141.00000 0.00000 18.50000 54.00000 0.00000 29.50000 2.65000 124.49995 0.00000 16.00000 58.00001 0.00000 30.00000 2.72500 108.99999 0.00000 11.50001 59.00001 0.00000 26.50001 2.80000 110.00000 0.00000 10.00000 56.50000 0.00000 18.00001 2.87500 102.00000 0.00000 8.00000 49.00000 0.00000 19.50000 2.95000 91.49999 0.00000 4.00000 50.50001 0.00000 20.99999 3.02500 84.50000 0.00000 6.50001 52.99998 0.00000 17.50000 3.10000 81.00001 0.00000 6.00001 48.99999 0.00000 19.99999 3.17500 77.50000 0.00000 4.00000 50.50000 0.00000 23.50000 3.25000 71.00000 0.00000 2.50000 47.00000 0.00000 31.50000 3.32500 71.50001 0.00000 0.50000 47.00000 0.00000 45.00001 3.40000 74.99999 0.00000 0.50000 48.00000 0.00000 58.00002 3.47500 67.50001 0.00000 1.00000 53.49999 0.00000 65.99999 3.55000 62.50000 0.00000 1.00000 51.50001 0.00000 68.50000 3.62500 48.00000 0.00000 0.00000 44.00000 0.00000 61.50000 3.70000 40.50001 0.00000 0.00000 49.00001 0.00000 56.00000 3.77500 45.99999 0.00000 0.00000 63.00002 0.00000 67.50002 3.85000 44.50000 0.00000 0.00000 64.50002 0.00000 67.50002 3.92500 41.50000 0.00000 0.00000 60.00000 0.00000 51.00001 4.00000 43.00000 0.00000 0.00000 59.50000 0.00000 46.50000 4.07500 43.00003 0.00000 0.00000 54.50001 0.00000 44.00003 4.15000 41.50001 0.00000 0.00000 55.00001 0.00000 46.50002 4.22500 35.00003 0.00000 0.00000 52.00001 0.00000 50.00001 4.30000 26.50001 0.00000 0.00000 58.00006 0.00000 47.50001 4.37500 28.00000 0.00000 0.00000 60.00000 0.00000 46.50000 4.45000 26.00001 0.00000 0.00000 54.99998 0.00000 45.99999 4.52500 24.50000 0.00000 0.00000 56.49999 0.00000 49.00000 4.60000 24.50000 0.00000 0.00000 59.49999 0.00000 47.50001 4.67500 24.00000 0.00000 0.00000 57.99996 0.00000 43.99999 4.75000 24.50000 0.00000 0.00000 49.50000 0.00000 47.50000 4.82500 18.50003 0.00000 0.00000 52.99997 0.00000 51.50000 4.90000 17.00001 0.00000 0.00000 51.49998 0.00000 46.49999 4.97500 17.00001 0.00000 0.00000 45.50000 0.00000 44.99999 5.05000 14.00001 0.00000 0.00000 46.50000 0.00000 43.49998 5.12500 14.50000 0.00000 0.00000 48.50000 0.00000 36.00000 5.20000 11.50001 0.00000 0.00000 48.50001 0.00000 33.50000 5.27500 9.50000 0.00000 0.00000 50.00001 0.00000 34.00000 5.35000 10.00000 0.00000 0.00000 45.50002 0.00000 31.50001 5.42500 10.50000 0.00000 0.00000 45.00004 0.00000 29.50000 5.50000 8.50000 0.00000 0.00000 50.50000 0.00000 34.50000 5.57500 7.00000 0.00000 0.00000 51.99998 0.00000 36.50001 5.65000 9.00001 0.00000 0.00000 60.00001 0.00000 34.50000 5.72500 10.00000 0.00000 0.00000 53.00003 0.00000 41.49998 5.80000 10.50001 0.00000 0.00000 48.00004 0.00000 39.99996 5.87500 8.50000 0.00000 0.00000 48.50000 0.00000 33.00000 5.95000 4.50000 0.00000 0.00000 51.49995 0.00000 31.50001 6.02500 6.00001 0.00000 0.00000 56.99999 0.00000 30.50000 6.10000 8.00000 0.00000 0.00000 56.49999 0.00000 29.00001 6.17500 6.99999 0.00000 0.00000 54.99997 0.00000 32.00003 6.25000 5.00000 0.00000 0.00000 46.00000 0.00000 39.00000 6.32500 3.50000 0.00000 0.00000 47.49997 0.00000 36.00002 6.40000 2.00000 0.00000 0.00000 54.00000 0.00000 33.00000 6.47500 3.49999 0.00000 0.00000 52.00001 0.00000 34.50000 6.55000 4.99999 0.00000 0.00000 49.50000 0.00000 31.49998 6.62500 4.50000 0.00000 0.00000 53.50000 0.00000 27.50000 6.70000 4.00001 0.00000 0.00000 50.00004 0.00000 25.50001 6.77500 3.00000 0.00000 0.00000 48.00001 0.00000 28.50001 6.85000 1.50000 0.00000 0.00000 54.50000 0.00000 32.50000 6.92500 3.00002 0.00000 0.00000 46.49995 0.00000 35.00002 7.00000 4.50000 0.00000 0.00000 39.00000 0.00000 31.50000 7.07500 4.49999 0.00000 0.00000 46.49997 0.00000 25.00000 7.15000 5.00000 0.00000 0.00000 49.99999 0.00000 30.50001 7.22500 2.50000 0.00000 0.00000 48.50000 0.00000 32.50001 7.30000 1.50000 0.00000 0.00000 47.99999 0.00000 28.50000 7.37500 2.00000 0.00000 0.00000 55.00000 0.00000 30.00000 7.45000 1.50000 0.00000 0.00000 57.50003 0.00000 31.50000 7.52500 0.50000 0.00000 0.00000 55.50001 0.00000 24.49998 7.60000 1.50000 0.00000 0.00000 54.00001 0.00000 19.99999 7.67500 2.50000 0.00000 0.00000 54.50003 0.00000 27.00003 7.75000 1.50000 0.00000 0.00000 55.50000 0.00000 31.50000 7.82500 1.00000 0.00000 0.00000 53.99998 0.00000 30.50000 7.90000 0.50000 0.00000 0.00000 50.49998 0.00000 31.50000 7.97500 1.00000 0.00000 0.00000 46.49999 0.00000 27.00002 8.05000 2.00000 0.00000 0.00000 42.99997 0.00000 25.00002 8.12500 2.50000 0.00000 0.00000 37.50000 0.00000 29.00000 8.20000 3.50000 0.00000 0.00000 50.49994 0.00000 27.50001 8.27500 2.50002 0.00000 0.00000 55.50008 0.00000 24.50002 8.35000 1.00000 0.00000 0.00000 48.00000 0.00000 20.49997 8.42500 1.00000 0.00000 0.00000 40.99996 0.00000 22.50002 8.50000 1.00000 0.00000 0.00000 39.00000 0.00000 28.00000 8.57500 1.00000 0.00000 0.00000 41.00002 0.00000 27.00001 8.65000 1.00000 0.00000 0.00000 37.50001 0.00000 27.99997 8.72500 0.49999 0.00000 0.00000 39.50003 0.00000 28.99998 8.80000 1.00001 0.00000 0.00000 42.50000 0.00000 24.99999 8.87500 1.00000 0.00000 0.00000 46.00000 0.00000 24.00000 8.95000 0.00000 0.00000 0.00000 46.50001 0.00000 23.00001 9.02500 0.00000 0.00000 0.00000 42.50002 0.00000 24.99996 9.10000 0.00000 0.00000 0.00000 46.00005 0.00000 28.49999 9.17500 2.00001 0.00000 0.00000 47.99998 0.00000 25.99999 9.25000 2.50000 0.00000 0.00000 47.00000 0.00000 22.00000 9.32500 1.50000 0.00000 0.00000 48.00001 0.00000 20.99999 9.40000 1.50001 0.00000 0.00000 47.99999 0.00000 20.50002 9.47500 1.50001 0.00000 0.00000 49.50001 0.00000 23.50005 9.55000 1.50000 0.00000 0.00000 45.49998 0.00000 25.99999 9.62500 0.50000 0.00000 0.00000 36.00000 0.00000 25.00000 9.70000 0.50000 0.00000 0.00000 36.99997 0.00000 22.00002 9.77500 1.00000 0.00000 0.00000 44.99998 0.00000 18.99999 9.85000 0.49999 0.00000 0.00000 47.00000 0.00000 28.50009 9.92500 0.00000 0.00000 0.00000 45.99999 0.00000 28.49996 $$ ctruncate: Normal termination Times: User: 0.0s System: 0.0s Elapsed: 0:04